Our work

Innovation lab geothermal energy open for entrepreneurs

Geothermal energy has an important role to play in the energy transition, alongside other sustainable sources such as solar energy, wind and biomass. In time, heat from the subsurface can provide a quarter of the heat demand from homes, offices and industry. In the Rijswijk Centre for Sustainable Geo-energy (RCSG) TNO is working with companies and universities to develop, test and validate new well designs and sensor technology as well as drilling techniques and materials to accelerate the development of geothermal energy.

At the moment in the Netherlands some twenty installations, mainly found in the greenhouse horticulture sector, produce about five petajoules (PJ) of geothermal heat per year. The aim is to increase this tenfold to 50 PJ in 2030 and, rising to 200 PJ in 2050. In total, geothermal energy will be generated from more than seven hundred sites. However, this will also require overcoming technical challenges that currently impede the profitable production of geothermal heat.

State-of-the-art facilities

Drilling rig above the almost 400 metre deep research pit of the innovation lab geothermal energy RCSG.

In the former Shell lab, which TNO transformed into the RCSG with the support of the Ministry of Economic Affairs and Climate Policy, Energie Beheer Nederland, the province of Zuid-Holland and the municipality of Rijswijk, new technologies and production methods can be tested 'full scale' and 'full size'. All facilities are state-of-the-art. An extra-high building standing on heavy foundations contains installations that cover the entire spectrum of subsurface drilling. A drilling installation above an almost 400 metre deep research pit, hydraulic presses of 300 and 400 tonnes, pressure vessels up to 1,000 bar, 3 flow loops, a hydrostatic drilling installation and a piping system and pumps in the building that are connected to every installation.

Testing in real conditions

For companies in the sector and for the manufacturing industry that supplies components, testing new products, materials and techniques for subsurface application is a costly affair. Thanks to the advanced lab, they do not have to invest in an expensive test environment themselves. Almost all underground conditions can be mimicked with the real dimensions to determine how products, materials and components behave under high pressure or at extreme temperatures at depths of kilometres. This makes the lab unique in Europe.

Open innovation with companies and universities

TNO cooperates with companies in an open innovation model. Consortia are formed around the various research programmes of companies active in geothermal energy, heat storage, salt extraction, mechanical engineering, suppliers of components and materials. In addition, there is close cooperation with knowledge partners TU Delft and Utrecht University. The emphasis is on reducing costs and boosting safety. The projects are diverse and are organised programmatically to facilitate knowledge sharing in domains to accelerate innovation while safeguarding the commercial interests of the partners.

Some examples

New drilling techniques

TNO is working with Huisman GEO, energy company ENGIE and EBN on a new drilling technique that can make it profitable to produce geothermal heat from thin layers. This involves so-called multilateral drilling, known from the oil and gas sector, in which the drill bit branches out in three directions. The technique has yet to be made suitable for the production of geothermal energy. If successful, it could in principle double the yield. Trials are planned in a 2.5-kilometre-deep earth layer near Zwolle. Prior to this, the technique will be tested in the lab in Rijswijk to a depth of 400 metres.

With an international consortium Aa Dutch Shell generated start-up will begin a test programme with an innovative, horizontal drilling technique, which is very suitable for the Dutch subsurface and should significantly increase the yield.

Smart casing, new materials, sensor pumps

Casing materials are subject to corrosion and degradation but at depths of kilometres it is difficult to determine the condition of the well construction. TNO is working with companies such as Huisman and universities, on smart casing, new materials and integrated sensors, similar to modern sensor technology in cars. These technologies make it possible to reduce maintenance costs.

Circular well construction design using natural sealing materials

TNO is investigating with operators how natural subsurface materials such as clay and salt can be used for sealing for sustainable safety and circular well technology.

Roadmap

Towards an energy-producing environment

In order to achieve the environmental and climate objectives in 2050, we must now make all the necessary preparations to accelerate the large-scale renovation of existing buildings. At present, less than... Read more
Our work

Innovative drilling technique promises new possibilities for extracting geothermal heat

In the RESULT (Enhancing REServoirs in Urban deveLopmenT) project, TNO – together with ENGIE, Huisman Geo and EBN – will be investigating whether an innovative drilling technique can make the production... Read more
TNO Insights

Unique open innovation lab for improving geothermal technologies

24 July 2019
Since this summer, companies that are directly or indirectly active in geothermal energy have been able to use an advanced laboratory in Rijswijk, in the province of Zuid-Holland. Here facilities are available... Read more
Contact

Gert-Jan Heerens MSc

  • Integrity
  • fiber
  • ultrasonic
  • instrumentation
  • downhole

FOLLOW TNO ON SOCIAL MEDIA

Stay up to date with our latest news, activities and vacancies

TNO.nl collects and processes data in accordance with the applicable privacy regulations for an optimal user experience and marketing practices.
This data can easily be removed from your temporary profile page at any time.
You can also view our privacy statement or cookie statement.