The Gaia mission is already delivering spectacular data to scientists and, by around 2022, will provide us with a very accurate three-dimensional map of our Milky Way galaxy. The Gaia spacecraft, launched on 19 December 2013, has been making scientific observations of the universe since July 2014. TNO developed, built and tested the Wave Front Sensor for this mission.

Gaia spacecraft surveying our galaxy

The Gaia-WFS is used to keep the ‘camera’ (telescopes) in sharp focus so that the mission can generate accurate data while data from the Gaia-WFS are being used to monitor that the telescopes do not misalign during the mission. The instrument is also being used for diagnostics.

Gaia, part of the Cosmic Vision programme of ESA and built by Airbus DS/Mersen-Boostec, enables the creation of a precise three-dimensional map of about one billion stars throughout our galaxy and beyond, mapping, in the process, their motions that provide information about the origin and evolution of the Milky Way. Comprehensive photometric classification provides details about physical properties of each star observed: luminosity, temperature, gravity and elemental composition. This massive stellar census will provide the basic observational data to tackle an enormous range of important problems related to the origin, structure and evolutionary history of our Milky Way.

THe Wave Front Sensor

This Wave Front Sensor (WFS) system developed by TNO measures the wave front errors of the two Gaia telescopes mounted on the Gaia spacecraft. The optical aberrations of this system itself have to be low. The required accuracy for the WFS is lambda/1000. Gaia is active over a broad wavelength and in cryogenic conditions (450 to 900 nm wavelength band and 130 to 200 K operating temperature). Invar developed a temperature independent solution to comply with these conditions.

Optical design

Gaia Wave Front Sensor

The telescope projects images of the stars onto the Focal Plane Array (FPA). The WFS picks up a small part of this field and then projects the telescope pupils onto a Micro Lens Array (MLA) whereby each micro lens images part of the pupil on the same FPA. Monitoring the spot positions on the FPA array provide the basis for measuring the wave front quality of the Gaia telescope (for the respective field of view). The spot positions of a star can be compared to the images of three calibration sources built into the WFS.

Our work

Gaia Basic Angle Monitoring system

The Gaia mission, part of ESA’s Cosmic Vision programme, will create an extraordinarily precise three-dimensional map of more than one billion stars in our Milky Way by around 2022. The Gaia spacecraft,... Read more
See also

Knowledge institutes join forces to research climate change and air pollution using satellites

03 February 2022
The KNMI, TNO, SRON and Delft University of Technology will collaborate on research and technology development in the field of earth observation. The creation of the ‘Clear Air’ consortium is intended... Read more

Satellite reveals Australian coal mines emit much more methane than expected based on national reporting

29 November 2021
A Dutch group of scientists has used space instrument TROPOMI to calculate methane emissions from six Australian coal mines. Together these account for 7% of the national coal production, but turn out... Read more