

Ruud Verbeek, Norbert Ligterink

2nd annual Emission Control Forum for Non-Road Mobile Machinery, Frankfurt, 7 & 8 September 2017

innovation for life

CONTENTS

- Introduction
- > SEMS measurement system
- Long term monitoring
 - PROMINENT inlet ships
 - Rail locomotive
- Conclusions

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 633929

INTRODUCTION

Formal In Service Monitoring (EU 2017/655) is only applicable to categories V5 and V6 land based engines

In Service Monitoring	EU 2017/655 - PEMS	SEMS (sensor based)
Main Parameters	Gas analysers for NOx, HC, CO Exhaust Flow Meter (EFM)	NOx/O ₂ , NH3 sensors Fuel flow / carbon balance
Averaging / visualisation	Work and CO ₂ based windows	Long term averaging, binning Work and CO ₂ based windows

CONTENTS

- Introduction
- > SEMS measurement system
- Long term monitoring
 - PROMINENT inlet ships
 - Rail locomotive
- Conclusions

SEMS

SEMS: Smart Emissions Measurement System

NOx, fuel, rpm, temperatures, gps

SEMS MEASUREMENT SYSTEM

SEMS MEASUREMENT SYSTEM

TBM NRMM forum, Frankfurt, 7 & 8 September 2017

TNO innovation for life

SEMS MEASUREMENT SYSTEM

SEMS compared to PEMS concentrations

R.J. Vermeulen, N.E. Ligterink, et.al. Transport and Air Pollution TAP 2012.

CONTENTS

- Introduction
- > SEMS measurement system
- Long term monitoring
 - PROMINENT inlet ships
 - Rail locomotive
- Conclusions

calculation options	Main parameters	NOx in	
NOx mass flow based on exhaust or air flow	NOx, CO ₂ concentrations Exhaust or inlet air flow Power	g/kWh	According to EU 2017/655
Carbon balance method Used in PROMINENT	NOx, CO_2 concentrations Fuel flow (re-calibrated) Power fuel flow \rightarrow Power	g/kWh	More practical alternatives for
Exhaust concentrations only	NOx, CO ₂ concentrations	ʻg/kg' CO ₂	ships

Refer to PROMINENT deliverable D5.8: <u>http://www.prominent-iwt.eu/</u> (end 2017)

PROMINENT

TNO innovation for life

Data until December 2016

TBM NRMM forum, Frankfurt, 7 & 8 September 2017

STANDARD REPORTING FORMAT

TNO innovation for life

REPORTING FORMAT OPTIONS

NO innovation for life

REPORTING FORMAT OPTIONS

> 1-hour average of NOx and power versus time

Engine ~ 1500 kW CCNR I + SCR/DPF

Other options: one day, one week, one month averages versus time

PROMINENT

	Inland vesse	ls	Container 110m	Container 135m	Dry Bulk 135m
Rhine ships: average emissions	Engine techr	nology	CCR I + SCR/DPF	CCR I + SCR	CCR II
1000-2000 hrs Period:	Max power[k	W]	1500	1050	850
	NOx	[g/kWh]	4.1	5.4	8.6
	NOx/CO ₂	[g/kg]	6.3	8.2	12.3
	NOx	[g/km]	171	515	281
	CO ₂	[kg/km]	27	63	23

Refer to PROMINENT deliverable D5.7 & D5.8 (end 2017): http://www.prominent-iwt.eu/

CONTENTS

- Introduction
- > SEMS measurement system
- Long term monitoring
 - PROMINENT inlet ships
 - Rail locomotive
- Conclusions

LOCOMOTIVE EMISSIONS MONITORING

Diesel locomotive:

- 656 hours of monitoring December 201 February 2017
- Netherlands Nordrhein-Westfalen

NOx emissions:

- Normal operation: 12 g/kg NOx/CO₂ (Comparable Euro I)
- Idling: 35 g/kg NOx/CO₂

CONTENTS

- Introduction
- > SEMS measurement system
- Long term monitoring
 - PROMINENT inlet ships
 - Rail locomotive
- Conclusions

TNO innovation for life

CONCLUSIONS

> Continuous monitoring of emissions is possible and useful for many purposes:

- Insight in long term environmental performance
- Complementary as low costs alternative to PEMS measurements
- Non-working events can be separated in several ways
- > The total life span emissions may replace ISM / ISC testing in the future
- Fuel flow or inlet air flow form excellent alternatives to exhaust mass flow, in order to calculate mass emissions (also for ISC/ISM)
- Extremely long idle periods with relatively high NOx emissions are seen with rail. This creates a gap between real-world emissions and ISM results.

THANK YOU FOR YOUR ATTENTION

Contact:

- Ruud Verbeek
- > TNO Sustainable Transport & Logistics
- Ruud.Verbeek@tno.nl
- Phone: +31 8886 68394 Cell phone +31 6 129 66882

SPARE SHEETS

TBM NRMM forum, Frankfurt, 7 & 8 September 2017

Consider alternative to g/kWh for ISM:

Monitor NOx/CO₂ ratio based on concentrations only

> Conversion to g/kg CO₂ with molecular masses:

$$=\frac{NO_x^{ppm}}{CO_2^{\%}\cdot 10}\cdot\frac{M_{NO_x}}{M_{CO_2}}$$

Plot NOx/CO₂ as a function of engine speed, indicative power or exhaust gas temperature. Determine limit value in g/kg CO₂.

Advantages:

- Stable relation with NOx in g/kWh
- Less susceptible to errors
- No amplification of values at low power

Carbon balance method

Following steps: NOx in g/kWh, g/kg CO₂ or g/km

Power based on fuel consumption

Either per engine of for a group of engines

$$P_{engine} = \frac{3600}{BSFC} \cdot mF_{fuel}$$
$$BSFC(LFE) = a \cdot \left(1 + 0.1 \cdot \left(\frac{b}{mF_{fuel}}\right)\right)$$

INO innovation for life

DATA PRESENTATION OPTIONS

Data checks

ACCURACY ESTIMATION

		g/h NOx		g/kW	g/kWh NOx		g/kg CO2	
		ISO 8178 laboratory	On-board monitoring	ISO 8178 laboratory	On-board monitoring		On-board monitoring	
Accuracy estimation	NOx concentration	2%	2%	2%	2%		2%	
	02/CO2 concentration		2%		2%		2%	
sum of errors ²) ^{0.5}	calibration gas	2%	2%	2%	2%		2%	
	cross sensitivity NH3, NO/NO2 ratio	2%	3%	2%	3%		3%	
	measuring point NOx inhomogienity	1%	3%	1%	3%		3%	
	pressure sensitivity		2%		2%		2%	
	Engine speed			1%				
	Engine torque /power			2%				
	Engine power							
Refer to PROMINENT leliverable D5.7 & D5.8: http://www.prominent-iwt.eu/ end 2017)	Air	2%		2%				
	Fuel flow		4%					
	BSFC/engine efficiency		3%		3%			
	Fuel carbon content		1%		1%		1%	
	Total accuracy ±	4%	8%	5%	7%		6%	

E