Evaluation of EUV resist performance below 20-nm CD using helium ion lithography

Diederik Maasa, Emilie van Geldhovena, Renée Pohllmanna, Anja van Langen–Süringa, Paul Alkemadeb, Sander Waterstraa, Ritk Hoefnagelsa, Coen Verspageta, Jeroen Meessena and Timon Fliervoeta

aTNO, P.O. Box 155, 2600 AD, Delft, The Netherlands
bKavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, The Netherlands
cASML, De Run 6665, Veldhoven, The Netherlands

Introduction
For EUV lithography, development of high performance EUV resists is of key importance1. This development involves studies into resist sensitivity, resolving power and pattern uniformity2. We have used a subnanometer-sized 30 keV helium ion beam to expose chemically amplified (CAR) EUV resists. We aim to show that Scanning Helium Ion Beam Lithography3 (SHIBL) is a useful and economically attractive technique to pre-screen novel EUV resists prior to their final performance evaluation in an EUV scanner.

Mechanism for EUV Chemically Amplified Resists

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image1.png}
\caption{A}{Figure 1 Info graphic on the activation mechanism of an EUV Chemically Amplified Resist. In SHIBL, step 1 and 2 are combined: the inelastic collision of a 30 keV He+ ion with a resist atom generates low-energy secondary electrons directly. Figure by courtesy of T.R. Younkin (Intel).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image2.png}
\caption{B}{Figure 2 Energy loss of 30 keV He+ ions through ionization of 40 nm thick EUV CAR resist on a Si substrate, computed by SRIM. The inset shows the energy loss through ionization (red) and recoil (blue) as a function of depth.}
\end{figure}

EUV & 30-keV He+ Interaction in CAR resist

There are remarkable similarities in the response of resists to He+ ions and EUV photons; both create low-energy Secondary Electrons that activate the resist4 (see Fig. 1). The main difference is that each He+ ion has multiple inelastic collisions with the resist atoms, generating hundreds of SEs along its trajectory in the resist, see Fig. 2. The weak backscattering of the He+ ions (Fig. 2), results in ultra-low proximity effects. This enables the exposure of dense and detailed patterns by a focused He+ ion beam without the need for proximity correction. Also EUVL capitalizes on low proximity, being it from a different origin.

Methods

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image3.png}
\caption{C}{Figure 3 Large-area dose response curves for EUV CAR resist of type A exposed to EUV and 30-keV He+. The EUV dose-to-clear is 18 ml cm-2, the contrast is 3. The He+ ion dose-to-clear is 1.36 ml cm-2 or 41 ml cm-2, the contrast is 2. Hence, compared to EUV photons, 150 times less He+ ions are required for a same resist modification.}
\end{figure}

For EUV lithography, development of high performance EUV resists is of key importance1. This development involves studies into resist sensitivity, resolving power and pattern uniformity2. We have used a subnanometer-sized 30 keV helium ion beam to expose chemically amplified (CAR) EUV resists. We aim to show that Scanning Helium Ion Beam Lithography3 (SHIBL) is a useful and economically attractive technique to pre-screen novel EUV resists prior to their final performance evaluation in an EUV scanner.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image4.png}
\caption{D}{Figure 4 CD SEM images of three dense arrays of point exposures, made in CAR resist of type A using SHIBL (a-c) and EUVL (d). The CDs are as follows: (a) 240 ions per \(\mu \)m2 per 50 nm line spacing (the EUV dose-to-clear is 1.36 ions per \(\mu \)m2). The dose is determined for corrected-shape contact holes. (b) 100 ions per \(\mu \)m2 per 50 nm line spacing (the EUV dose-to-clear is 1.36 ions per \(\mu \)m2). The dose is determined for corrected-shape contact holes. (c) 40 ions per \(\mu \)m2 per 50 nm line spacing (the EUV dose-to-clear is 1.36 ions per \(\mu \)m2). The dose is determined for corrected-shape contact holes. (d) 10 ions per \(\mu \)m2 per 50 nm line spacing (the EUV dose-to-clear is 1.36 ions per \(\mu \)m2). The dose is determined for corrected-shape contact holes.}
\end{figure}

The dose response curves from EUVL and SHIBL are rather similar, despite a different contrast (2 vs. 3). Per area, 150 times less ions than photons are needed for the same effect on the resist. He+ ions are estimated to generate 4 times more SEs per nm2 than EUV, see Fig. 2.}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image5.png}
\caption{E}{Figure 5 CD SEM images of lines-and-spaces at 40- and 50-nm pitch, exposed with SHIBL in CAR resist A at too low and too high dose. The graphs show line CD and LWR as a function of dose.}
\end{figure}

The dose response curves from EUVL and SHIBL are rather similar, despite a different contrast (2 vs. 3). Per area, 150 times less ions than photons are needed for the same effect on the resist. He+ ions are estimated to generate 4 times more SEs per nm2 than EUV, see Fig. 2.}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image6.png}
\caption{F}{Figure 6 CD SEM image and LWR analysis of lines-and-spaces at 40- and 50-nm pitch, exposed with EUVL in CAR resist B at optimal dose.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image7.png}
\caption{G}{Figure 7 CD SEM images of lines-and-spaces at 40- and 50-nm pitch, exposed with EUVL in CAR resist B at optimal dose.}
\end{figure}

Conclusions

1. Scanning Helium Ion Beam Lithography is a promising novel method for the pre-screening of EUV resists on fundamental properties like resolution, sensitivity and pattern uniformity. EUVL and SHIBL both activate resist through low-energy secondary electrons. In SHIBL, these SEs are generated directly by the He+ ions, enabling more insightful studies of EUV CAR activation by SEs.

2. Using SHIBL, contact holes and trenches at sub-20 nm resolution were exposed in CAR EUV resist. The results are alike EUVL exposures, although the obtained pattern uniformity is worse. Especially for the CHs, this is at least partly attributed to sub-optimal settings of the SHIBL expose tool.

3. Since SHIBL neither shows proximity effects nor requires a physical mask, the printability of more complex patterns can be evaluated, potentially enabling early device R&D...

References