AUTOMATED RAVELING INSPECTION AND MAINTENANCE PLANNING ON POROUS ASPHALT IN THE NETHERLANDS

FIRM15 - Brussels

contact: willem.vanaalst@tno.nl
INTRODUCTION

- Willem van Aalst, TNO
 - System engineer & project manager (infra inspection)

- Automated raveling inspection and maintenance planning on porous asphalt in the Netherlands

Project(s) performed under authority of:
- The Dutch Highway Agency, Ministry of Infrastructure and the Environment
CHALLENGES

- Porous Asphalt (ZOAB):
 - Dutch highways: > 85% ZOAB
 - ZOAB 0/16: > 70%

- Raveling:
 - Loss of aggregates
 - Dominant failure mechanism (>90%)

- Alternative for visual inspections:
 - Objective, Safe, Cost
 - Road width (# lanes)
 - Point laser(s) not sufficient (Stone(a)way)

Source: www.bergersmeeting.com/nieuws.htm
GENERAL CONCEPT

3D data generation

Raveling

Asset management
TIMELINE

- 2009 - 2010: Feasibility
- 2010 - 2011: Proof of concept
- 2012 - 2013: First generation
- 2013-2014: New vehicle
- 2014-2015: Update (colour)
FEASIBILITY PHASE

Questions:
- Raveling from 3D surface?
- Possible at high speed?

Test location: A65:
- 15 sections (1m²)
- Visual inspections
- 3D surfaces
FEASIBILITY PHASE

Simulation of measurement systems

State of the art systems:
- Laser triangulation (1 or 2 spots)
- Laser triangulation (2 lines)
- Amplitude phase modulation lasers

Selected: line laser triangulation
- LCMS sensors (INO/Pavemetrics)
PROOF OF CONCEPT

› 2009 - 2011

Sections
N = 676 (each 100 m)

RWS ARAN 2 equipped with the LCMS system

Test objects used to validate system specifications
PROOF OF CONCEPT

› Visual versus Model:

<table>
<thead>
<tr>
<th>pljr model</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>pljr adviseur</td>
<td>29</td>
<td>12</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>21</td>
<td>20</td>
<td>3</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>19</td>
<td>34</td>
<td>9</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>10</td>
<td>38</td>
<td>19</td>
<td>4</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>22</td>
<td>21</td>
<td>21</td>
<td>4</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>20</td>
<td>8</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4</td>
<td>16</td>
<td>44</td>
<td>56</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>totaal</td>
<td>39</td>
<td>53</td>
<td>68</td>
<td>78</td>
<td>51</td>
<td>61</td>
<td>56</td>
<td>406</td>
</tr>
</tbody>
</table>

› Good correlation with visual inspections!
› 93% (+/- 1 year)
FIRST GENERATION

Main components

› LCMS sensors & controller (3D data)
› Laser Safety Controller (tilt, speed, …)
› RTK – GPS (positioning)
› DMI (triggering)
› Front- & side camera’s (reference)
› FPGA framegrabber (HW timing)
› Acquisition pc (Windows)
› Control pc (Unix)
SPECIFICATIONS

- High speed ‘in-traffic’ measurements
 - ~120 km/h
 - Lane wide: 4 meters

- 3D range data
- 2D intensity data

- Resolution:
 - 1.0 mm (transversal)
 - 4.7 mm (longitudinal)

- Accuracy (height):
 - ~ 0.5 mm (σ)
EXAMPLE DATA

Range

Intensity

3D print
DATA PROCESSING

Steps

1. Road-marking detection
2. Flattening (road & vehicle motion)
3. Texture analysis (pavement type)
4. Removal of:
 • Mechanical damage (rim marks)
 • Joints
5. Wheel path (maximum damage)
6. Raveling (per m² in wheel path)
 • % stone loss
 • % clustered stone loss
PAVEMENT TYPE CLASSIFICATION

- Dependencies on pavement type
 - Raveling
 - Maintenance interval

- Two approaches:
 - Spectrum based (FFT)
 - Texture based (various descriptors)

Porous Asphalt
0/16 mm - 4/8 mm
PAVEMENT TYPE CLASSIFICATION

Examples:

Spectrum analysis

Texture analysis
PAVEMENT TYPE CLASSIFICATION

- Classification
 - 11 texture measures
 - Quadratic classifier

- Evaluation set
 - $N = 27,128$ (100m)

- Results
 - Overall: $> 98.8\%$ correct
 - Porous Asphalt: $> 99.7\%$ correct
RAVELING

- Flatten & clean data

- ‘Coin’ algorithm
 - Radius \((r) \)
 - Depth \((d) \)

- ‘3D Stone(a)way’
RAVELING

› Repeatability:
 › Very good!

› Reproducibility:
 › Very good!
MAINTENANCE INTERVAL

› ‘Old’ style:
 › Visual inspections ➔ Maintenance interval (year)

› ‘new’ style:
 › Ravelling data ➔ Maintenance interval
MAINTENANCE INTERVAL

- Input:
 - Ravelling per m² (both wheel paths)

- Linear classifier
 - 28 inputs → 1 output (per 100m)
 - Trained on visual inspections
MAINTENANCE INTERVAL

- **Results:**
 - 2012: ~ 99% correct (+/- 1 year to visual inspection)

- Two districts: Venlo & St. Joost
- Visual inspections

<table>
<thead>
<tr>
<th>Interval [years]</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visual</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rijkswaterstaat
Ministry of Infrastructure and the Environment

23 April 2015
Results:

2014

<table>
<thead>
<tr>
<th>typeLCM!MJPV15</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZOAB(+)</td>
<td>0</td>
<td>143</td>
<td>34</td>
<td>31</td>
<td>9</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>23</td>
<td>67</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>26</td>
<td>71</td>
<td>162</td>
<td>72</td>
<td>64</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17</td>
<td>59</td>
<td>152</td>
<td>247</td>
<td>217</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>50</td>
<td>134</td>
<td>529</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>28</td>
<td>71</td>
<td>375</td>
<td>1238</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>24</td>
<td>40</td>
<td>420</td>
<td>2675</td>
</tr>
</tbody>
</table>

ZOAB(+) Total: 230 262 477 593 1622 4365 34675
SUMMARY

› Accurate measurement of raveling on PA (ZOAB)
 › High speed and ‘in-traffic’
 › Good repeatability and reproducibility

› System operational since 2012
 › Replacing most visual inspections

› Modelling of maintenance interval
 › Based on raveling

› Accurate pavement type classification
ONGOING & FUTURE RESEARCH

- Cracking on PA (ZOAB)
- Raveling on fine PA and SMA
- Commercialisation
- (EU-)collaboration
- (Standardisation)
CHALLENGES FUTURE

› Variety in pavements versus Monitoring & Prediction

› Fine porous asphalt versus Measurements
THANK YOU FOR YOUR ATTENTION

Willem van Aalst

Contact: willem.vanaalst@tno.nl

© TNO 2015