

CATS: Cyclist-AEB Testing System

Car – bicyclist accident analysis and bicyclist dummy development

© 2015 carhs.training gmbh & CATS

CAR 2 CAR

2014

2

EURO

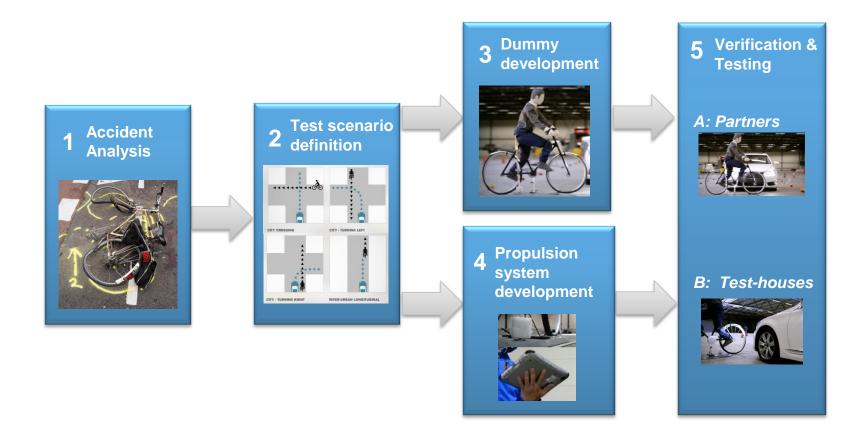
OF SAFER CRAS

NCAP

carhs

Objective of CATS (Cyclist-AEB Testing System) project:

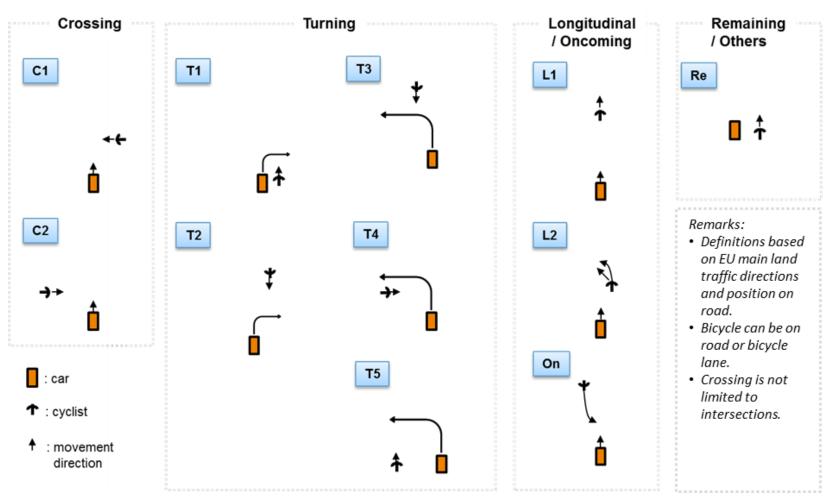
- Prepare the introduction of a protocol for consumer tests of Cyclist-AEB systems on board passenger cars.
- Propose a test setup (incl. hardware) and test protocol for Cyclist-AEB systems based on technical/scientific considerations.
- Base the tests on analysis of most relevant cyclist accident scenarios in EU countries.
- Timing:
 - Start : 2014 Q2
 - Finish : 2016 Q1
- In this presentation, the results of the accidentology WP are reported, prioritizing the cyclist-to-car accident scenarios. Also the latest status of dummy and propulsion system will be shown.



Project approach:

Accidentology approach

- Study databases for 6 European countries;
- Select severe car-to-cyclists accidents -->
 fatalities, seriously injured;
- Provide overview of distinguished accident scenarios;
- Determine the distribution of scenarios in the different countries;
- Prioritize scenarios & indicate how many fatalities and seriously injured are covered.

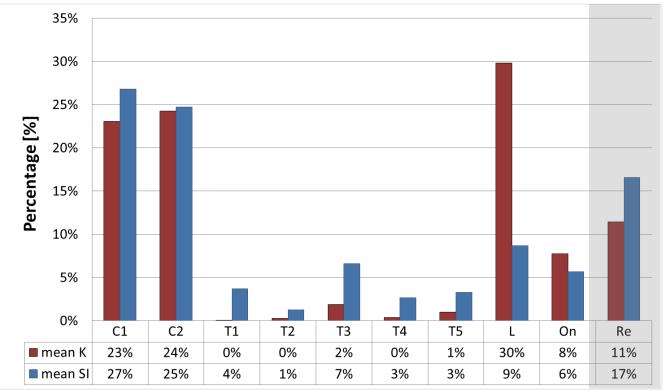


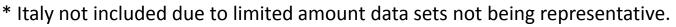
Distinguished car-to-cyclist scenarios

2015

Check if all relevant scenarios are covered

© 2015 carhs.training gmbh & CATS




C1

C2

Prioritization of scenarios:

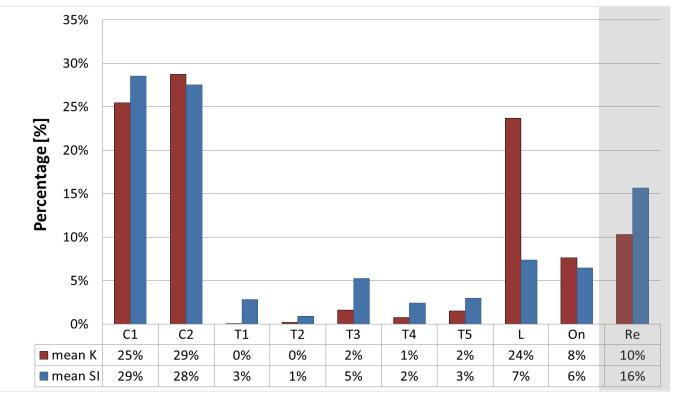
- What fraction of fatal and severe accidents is covered by the different scenarios?
- All countries equally weighted*:

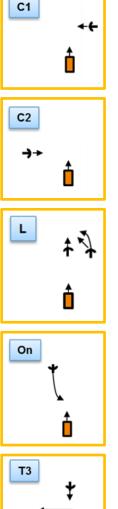
Prioritization of scenarios:

Weight the results according to # cyclist fatalities per million inhabitants:

Country	# road fatalities per million inhabitants	# cyclist fatalities per million inhabitants	Weighting [%]
France	62	2,8	11%
Germany	45	6,0	26%
Italy*	68	5,4	-
Netherlands	32	9,2	38%
Sweden	28	3,6	15%
υк	30	2,3	10%

* Italy not included due to limited amount data sets not being representative.

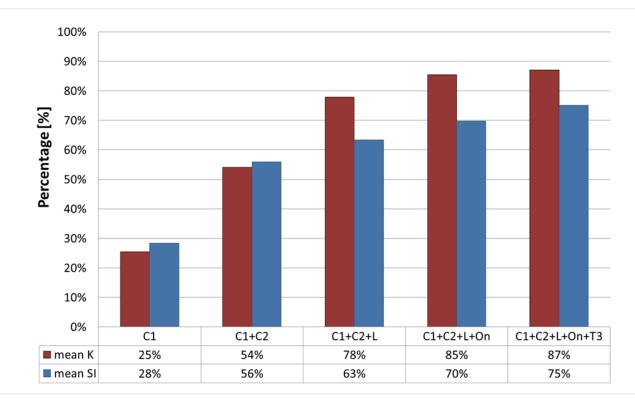


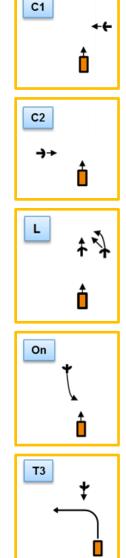


Prioritization of scenarios:

- What fraction of fatal and severe accidents is covered by the different scenarios?
- Weight the results according to # cyclist fatalities per million inhabitants*:

* Italy not included due to limited amount data sets not being representative.





Conclusions:

- C1, C2 and L in all countries dominant.
- The scenarios C1, C2 and L together cover already between 78% (fatal) and 63% (seriously injured):

* Italy not included due to limited amount data sets not being representative.

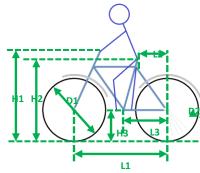
Next steps accidentology & scenario definition:

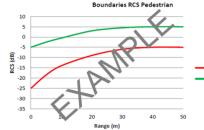
- Selection of scenarios for which a test protocol is developed.
- Determine test ranges for these scenarios such as:
 - Vehicle speeds
 - Bicycles speed
 - Presence of view blocking obstructions
 - Collision point on the vehicle
 - Size and posture of bicyclist

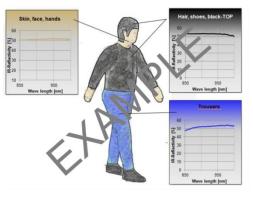
- Select parameters describing the level of light and precipitation.
- Use information available in databases (GIDAS PCM), enriched with results from observation studies.

- CATS consortium to define technical specification for bicycle, cyclist dummy and propulsion system.
- 4activeSystems GmbH to development of bicycle and cyclist dummy together with propulsion system meeting set requirements.
- Development and verification workshops are ongoing:
 - Development workshops focus on detailed development of bicycle and cyclist dummy.

Verification workshops focus on feasibility of scenarios





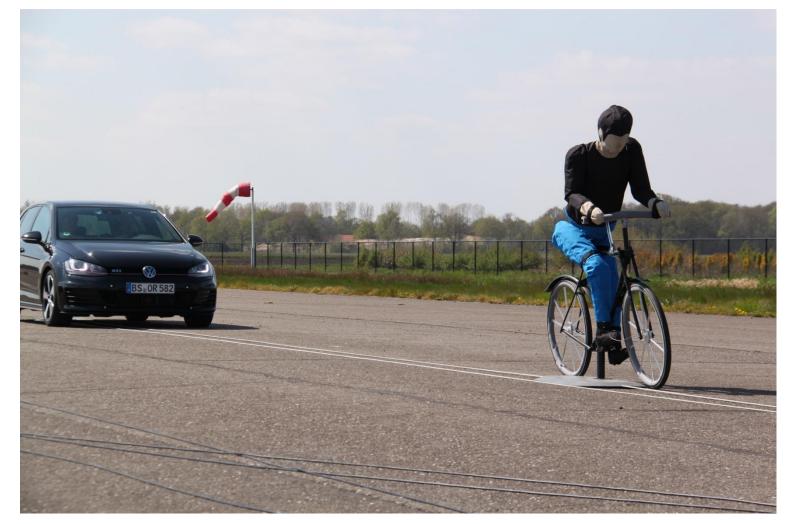


- Align all bicycle and cyclist dummy requirements as much as possible with the pedestrian dummy:
 - **Euro NCAP**
 - vFSS
 - ISO/TC 22/WG 16 Active safety test
- Specify requirements on bicycle and cyclist dummy for:
 - **Dimensions**
 - Features
 - Sensing properties

		The Netherlands	Germany	UK	Spain	Sweden	France	Italy	EU	CATS (proposed)
	Front reflector	•	Yes, white	-	•	Yes, white, only at night	Yes, white	Yes	•	٧
	Rear reflector	Yes, red (0,35-0,9 m from ground)	Yes, one red and one wide- angle	Yes, red	-	Yes, red (could be combined with the rear light), only at night	Yes, red	Yes	Yes, red	٧
	Pedal reflectors	Yes, yellow at front and rear	Yes, yellow at front and rear	Yes, amber	-	•	Yes, orange at front and rear	Yes, both sides	•	٧
	Wheel reflectors	Yes, white or yellow	Yes, at least 2 yellow or a white stripe	-		Orange or white side reflectors, only at night	Yes, orange	Yes	-	٧
	Front light	Yes, white, only at night/dark weather	Yes, white	Yes, only at night	-	Yes, fixed white or yellow light, only at night	Yes, yellow or white, only at night/dark weather	Yes, yellow or white	Yes, white or yellow	٧
	Rear light	Yes, red, only at night/dark weather	Yes, red (at least 250 mm from ground)	Yes, only at night	•	Yes, fixed red Light, only at night	Yes, red, only at night/dark weather	Yes, red	Yes, red	٧

- Align propulsion system requirements with AEB pedestrian as much as possible:
 - Euro NCAP
 - vFSS
 - ISO/TC 22/WG 16 Active safety test
- Specify requirements on:
 - General requirements
 - Dimensions
 - Dynamic properties

CATS project: Verification & testing


Crossing

Longitudinal

Next steps

- Fine tune sensor characteristics of dummy.
- Ensure impactability of dummy.
- Improve propulsion system for longitudinal scenario.
- Further verification of test protocol and dummy in development and verification workshops.
- Test protocol definition including specification of scenarios, dummy & propulsion system.

Thank you very much for you attention

- Heiko Schebdat, GME Vehicle Safety Integration, technical lead
 - Telephone +49 6142 7 69643
 - Email: Heiko.Schebdat@de.opel.com
- Sjef van Montfort, TNO Integrated Vehicle Safety, consultant
 - Telephone: +31 88 866 09 32
 - E-mail: Sjef.vanMontfort@tno.nl

More info can be found on www.tno.nl/cats

2015