OBSERVATION STUDY INTO THE INFLUENCE OF VIEW BLOCKING OBSTRUCTION AT AN INTERSECTION ON BICYCLE AND PASSENGER CAR VELOCITY PROFILES

Olaf Op den Camp, Stefanie de Hair, Erwin de Gelder, Irene Cara

ICSC2015, Hannover, 16th September 2015

Foto: Tjerja Geerts
INTRODUCTION

- Total road fatalities
- Percentage cyclist fatalities

Year

Total road fatalities (x1000)

Percentage cyclist fatalities

5 10 15 20 25 30

5% 6% 7% 8% 9% 10%

2014 CAR 2 CAR

2016 PEDESTRIAN

EXPECTED IN 2018 CYCLIST

www.euroncap.com

3 | Observation study

16 September 2015
CATS PROJECT

Objective:

- Prepare the introduction of a protocol for consumer tests of Cyclist-AEB systems on board passenger cars.
- Propose a test setup (incl. hardware) and test protocol for Cyclist-AEB systems based on technical/scientific considerations.
- Base the tests on analysis of most relevant cyclist accident scenarios in EU countries.

Timing:

- Start : 2014 Q2
- Finish: 2016 Q1
MOST COMMON CAR-TO-CYCLIST SCENARIOS

Test parameters:
- Car speed
- Bicycle speed
- Bicycle intention/trajectory
- Contact point in case of collision
- Time-To-Collision
- Size & location of view-blocking obstructions

Limited detailed data of these scenarios available → Observation study
OBJECTIVE OBSERVATION STUDY

› **Objective:**
 Determine the influence of the presence of a view-blocking obstruction on the behaviour of cars and bicycles when approaching a crossing.

› **Hypothesis:**
 Both bicyclists and car drivers **reduce speed** in case the **view on the crossing is limited** because of an obstruction (e.g. building, fouling, parked car). The more the view is limited, the larger the effect on speed reduction is expected to be.
APPRAOCH

› Measure cyclist and car behaviour
 › Velocity-profile as function of distance (with automotive radar)
 › Visual behaviour (with camera)

› Locations:
 › 2 bicycle crossings in Eindhoven area
 › Reasonable severe permanent view-blocking obstruction
Urban area
Speed limit = 50 km/h (also 20 km/h possible)
Severe obstruction prevents direct view on right hand sight (w.r.t. car)
Permanent obstruction (e.g. hedge, building)
Cyclist have priority, however
• No traffic control lights
• No stop signs (for neither cyclist nor car)
• No or only low speed bumps
Significant traffic flow
No specific requirements w.r.t. road layout

* Values: based on typical TTC and characteristic measures for road-layout
MEASUREMENT EQUIPMENT

› **Speed measurements** by use of road-side-unit
 › 2x Automotive radar (Continental SSR 208)
 Short-range-radar, update rate 33 Hz
 FoV +/-20°, range 50m

› Data acquisition box
 filtering, target tracking, data recorder, wireless communication unit

› **Visual behaviour** by use of camera
 › 2x Action camera’s *(GO PRO)*

* Based on: life time, minimum velocity, ROI
SELECTED LOCATIONS

SON: busy bicycle crossing

- Obstruction: hedge
- Cyclist lane: exclusively for cyclists
- Location: crossing connects living area with busy village center
- Priority:
 - Non-prioritized intersection
 - Cyclist from right have right of way
 - Cyclist give yield to traffic from right

EINDHOVEN: busy 4-armed intersection*

- Obstruction: building
- Cyclist lane: for all traffic
- Location: crossing in city center
- Priority:
 - Non-prioritized intersection
 - Traffic from right has right of way
 - Cyclist give yield to traffic from right

* This is not a round-about!!
MEASUREMENT SETUP: SON

Fully obstructed view

Cyclists
Obstruction (hedge)

D₀₁ = 4.5 m
D₀₂ = 5.0 m

Boslaan
Cars

Radar integrated in garbage bin

Unobstructed view

Cars & cyclists
Boslaan

GoPro camera attached to traffic sign

Observation study
RESULTS SON: BICYCLE

<table>
<thead>
<tr>
<th>Bicycle manoeuvre</th>
<th>Stopped pedaling</th>
<th></th>
<th>Continued pedaling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continued riding</td>
<td>Full stop</td>
<td>Continued riding</td>
</tr>
<tr>
<td>Straight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>20</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>no cars present</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>car from left</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>car from right</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Turning left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>no cars present</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>car from left</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>car from right</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>cars from both sides</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Turning right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cars from both sides</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total # bicycles</td>
<td>25</td>
<td>15</td>
<td>4</td>
</tr>
</tbody>
</table>

- Most bicycles stopped pedalling but continued riding

Based on video-observation
RESULTS SON: BICYCLE

Decay of speed by bicyclists in approaching intersection
(in case view is blocked on approaching cars, even if bicyclists have priority)

Initial speed
Maximum reduced speed
Speed reduction

- Initial speed of bicyclists
- Maximum reduced speed
- Speed reduction

Graph showing the change in bicycle speed profile over distance to collision point.
RESULTS SON: BICYCLE

cyclist low speed
- $V_{\text{ini}} = 10 \text{ km/h}$
- $V_{\text{min}} = 6 \text{ km/h}$

cyclist average speed
- $V_{\text{ini}} = 14 \text{ km/h}$
- $V_{\text{min}} = 8 \text{ km/h}$

cyclist high speed
- $V_{\text{ini}} = 19 \text{ km/h}$
- $V_{\text{min}} = 6 \text{ km/h}$
RESULTS SON: CARS

- In both situations cars reduce speed when approaching crossing.
- In obstructed case, some cars seem to overlook cyclists might appear from behind obstruction and do not reduce speed (only slightly).
RESULTS SON: CARS

Cars high speed

\[V_{\text{ini}} = 70 \text{ km/h} \]
\[V_{\text{min}} = 40 \text{ km/h} \]

\[V_{\text{ini}} = 60 \text{ km/h} \]
\[V_{\text{min}} = 50 \text{ km/h} \]
MEASUREMENT SETUP: EINDHOVEN

Fully obstructed view

Cyclists
Obstruction (house)
Cars

Radar integrated in garbage bin

GoPro camera attached to traffic sign

$D_{01} = 4.3 \, m$
$D_{02} = 4.9 \, m$
RESULTS EINDHOVEN: BICYCLE

More than 85% stopped pedalling

Even with no cross-traffic vast majority stops pedalling during approach

More cyclists stop pedalling than continue pedalling

<table>
<thead>
<tr>
<th>Bicycle manoeuvre</th>
<th>Stopped pedaling</th>
<th>Continued pedaling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continued riding</td>
<td>Full stop</td>
</tr>
<tr>
<td>Straight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>68</td>
<td>38</td>
</tr>
<tr>
<td>no cars present</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>car from left</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>car from right</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>cars from both sides</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Turning left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>no cars present</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>car from left</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>car from right</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>cars from both sides</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Turning right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>no cars present</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>car from left</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>car from right</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>cars from both sides</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

| Total # bicycles | 93 | 46 | 36 |

Speed profile analysis of location Eindhoven has not been concluded yet, as it is hard to make distinction between cars and bicycles in same lane

Prelim results: speed reduction cyclists is 4 km/h
CONCLUSIONS

Method and measurement device developed has served its purpose
- Possible to measure velocity-profiles for bicycles and cars on 2 intersections
- It is difficult to distinguish bicycles and cars automatically

In case of approaching an intersection with severely blocked-view

- **Bicyclists**
 - Appear to reduce their speed: Approximately 6 km/h (Son) ~4 km/h (Eindhoven)
 - Speed reduction coincides with stopping pedalling
 - More than 80% of the observed bicyclists stopped pedalling
 - Obstacle prevents early anticipation on cross-traffic

- **Cars**
 - Generally reduce speed
 - It is very difficult to distinguish between geometrical layout and interaction with other traffic participants
 - Obstacle cause drivers to overlook the traffic from the behind obstruction
 - No general conclusions can be drawn regarding the speed reduction and the presence of a view-blocking obstruction
RECOMMENDATIONS

› Finish analysis of the observations in Eindhoven

› Perform similar study at typical intersections in Germany, to be able to generalize conclusions, by taken into account
 › More than 2 locations
 › Differences in culture (especially traffic rules)
ACKNOWLEDGEMENT: