ON-ROAD NO\textsubscript{x} EMISSIONS OF 15 EURO 6 DIESEL CARS

Veerle Heijne
INTRODUCTION

- 15 Euro 6 passenger cars measured on the road in 2015-2016
 - in real-world operation

Goal of measurements

- Representative emission factors for
 - air quality models
 - national emission registration
- Insight in real-world emission performance
- Screening of in-service conformity
TRIPS

On-road NOx emissions of 15 Euro 6 diesel cars

- Den Haag
- Utrecht
- Amsterdam
- Rotterdam

Motorway:
- 80 km/h
- 130 km/h

Rural

Urban

Motorway morning congestion

Motorway evening congestion

GPS location velocity [km/h]

TNO innovation for life
TRIPS

On-road NOx emissions of 15 Euro 6 diesel cars

80 km/h motorway

80 km/h rural

GPS location

NOx [mg/km]

80 km/h

urban

Den Haag

Amsterdam

Utrecht

Rotterdam

03 November 2016
<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Category</th>
<th>Power [kW]</th>
<th>AT</th>
<th>Odometer [km]</th>
<th>Test Mass [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citroen</td>
<td>Cactus</td>
<td>M</td>
<td>73</td>
<td>SCR</td>
<td>9.739</td>
<td>1141</td>
</tr>
<tr>
<td>Ford</td>
<td>Fiesta</td>
<td>M</td>
<td>81</td>
<td>LNT</td>
<td>23.040</td>
<td>1155</td>
</tr>
<tr>
<td>Ford</td>
<td>Focus</td>
<td>M</td>
<td>70</td>
<td>LNT</td>
<td>6.500</td>
<td>1400</td>
</tr>
<tr>
<td>Opel</td>
<td>Zafira</td>
<td>M</td>
<td>100</td>
<td>SCR</td>
<td>60.366</td>
<td>1776</td>
</tr>
<tr>
<td>Peugeot</td>
<td>308</td>
<td>M</td>
<td>110</td>
<td>SCR</td>
<td>1.675</td>
<td>1478</td>
</tr>
<tr>
<td>Peugeot</td>
<td>308</td>
<td>M</td>
<td>81</td>
<td>SCR</td>
<td>2.525</td>
<td>1313</td>
</tr>
<tr>
<td>Peugeot</td>
<td>Partner</td>
<td>N1 CL II</td>
<td>73</td>
<td>SCR</td>
<td>5.740</td>
<td>1460</td>
</tr>
<tr>
<td>Renault</td>
<td>Clio</td>
<td>M</td>
<td>66</td>
<td>LNT</td>
<td>3.623</td>
<td>1183</td>
</tr>
<tr>
<td>Renault</td>
<td>Megane – a</td>
<td>M</td>
<td>81</td>
<td>LNT</td>
<td>6.233</td>
<td>1371</td>
</tr>
<tr>
<td>Renault</td>
<td>Megane – b</td>
<td>M</td>
<td>81</td>
<td>LNT</td>
<td>1.231</td>
<td>1380</td>
</tr>
<tr>
<td>Volvo</td>
<td>V40</td>
<td>M</td>
<td>88</td>
<td>LNT</td>
<td>6.862</td>
<td>1346</td>
</tr>
<tr>
<td>VW</td>
<td>Golf</td>
<td>M</td>
<td>81</td>
<td>LNT</td>
<td>14.550</td>
<td>1280</td>
</tr>
<tr>
<td>VW</td>
<td>Passat</td>
<td>M</td>
<td>81</td>
<td>LNT</td>
<td>50.123</td>
<td>1446</td>
</tr>
<tr>
<td>VW</td>
<td>Polo</td>
<td>M</td>
<td>55</td>
<td>LNT</td>
<td>30.187</td>
<td>1125</td>
</tr>
<tr>
<td>Mercedes</td>
<td>C220</td>
<td>M</td>
<td>125</td>
<td>SCR</td>
<td>17.100</td>
<td>1625</td>
</tr>
</tbody>
</table>
SMART EMISSION MEASUREMENT SYSTEM

› SEMS registers sensor info and OBD signals
› Validated with PEMS results
› 1Hz signal
› Measures NO\textsubscript{x}, NH\textsubscript{3}, CO\textsubscript{2}
NORMALISATION

- Direct comparison of different vehicles over the same trips is unfair due to:
 - ambient temperature
 - number of DPF regenerations
 - start/stop system
 - congestion → the same motorway route at different times:

- Options for normalisation with respect to velocity and acceleration:
 - VERSIT+
 - CLEAR, EMROAD (RDE tools)
VERSIT + NORMALISED RESULTS

<table>
<thead>
<tr>
<th>Test temperature Range</th>
<th>Urban congestion</th>
<th>Urban</th>
<th>Rural</th>
<th>Motorway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle [°C]</td>
<td>WS1</td>
<td>WT1</td>
<td>WT2</td>
<td>WT3</td>
</tr>
<tr>
<td>SCR equipped vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercedes C220</td>
<td>6 - 26</td>
<td>413</td>
<td>310</td>
<td>202</td>
</tr>
<tr>
<td>Citroen Cactus</td>
<td>1 - 15</td>
<td>395</td>
<td>322</td>
<td>339</td>
</tr>
<tr>
<td>Peugeot 308 81kW</td>
<td>0 - 13</td>
<td>424</td>
<td>326</td>
<td>282</td>
</tr>
<tr>
<td>Peugeot 308 110kW</td>
<td>0 - 13</td>
<td>604</td>
<td>441</td>
<td>322</td>
</tr>
<tr>
<td>Peugeot Partner</td>
<td>-1 - 15</td>
<td>567</td>
<td>448</td>
<td>394</td>
</tr>
<tr>
<td>Opel Zafira</td>
<td>0 - 15</td>
<td>1306</td>
<td>973</td>
<td>747</td>
</tr>
<tr>
<td>LNT equipped vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VW Passat</td>
<td>1 - 16</td>
<td>191</td>
<td>162</td>
<td>140</td>
</tr>
<tr>
<td>Ford Fiesta</td>
<td>3 - 13</td>
<td>243</td>
<td>220</td>
<td>218</td>
</tr>
<tr>
<td>VW Golf</td>
<td>1 - 10</td>
<td>351</td>
<td>303</td>
<td>261</td>
</tr>
<tr>
<td>VW Polo</td>
<td>0 - 15</td>
<td>393</td>
<td>315</td>
<td>247</td>
</tr>
<tr>
<td>Volvo V40</td>
<td>2 - 17</td>
<td>433</td>
<td>342</td>
<td>292</td>
</tr>
<tr>
<td>Ford Focus</td>
<td>5 - 25</td>
<td>498</td>
<td>466</td>
<td>442</td>
</tr>
<tr>
<td>Renault Clio</td>
<td>8 - 17</td>
<td>1227</td>
<td>941</td>
<td>758</td>
</tr>
<tr>
<td>Renault Megane - a</td>
<td>0 - 17</td>
<td>1024</td>
<td>840</td>
<td>772</td>
</tr>
<tr>
<td>Renault Megane- b</td>
<td>-3 - 20</td>
<td>1159</td>
<td>949</td>
<td>884</td>
</tr>
</tbody>
</table>
VERSIT + NORMALISED RESULTS

Report: TNO 2016 R11177

NOx [mg/km] Urban congestion
NOx [mg/km] Urban
NOx [mg/km] Rural
NOx [mg/km] Motorway

NOx limit: 80 mg/km

SCR

LNT

On-road NOx emissions of 15 Euro 6 diesel cars

03 November 2016
On-road NOx emissions of 15 Euro 6 diesel cars

NOx limit: 0.08 g/km

Results vary between RDE trips

Different normalisation

10 | On-road NOx emissions of 15 Euro 6 diesel cars

03 November 2016
EMROAD / CLEAR

- Different behaviour of normalisation tools
- Might evoke selective use of tools
- Tools are insufficiently transparent to enable full evaluation of the causes for different behaviour
FURTHER ASSESSMENT OF EMISSION BEHAVIOUR

- Influence of velocity and acceleration
- Local effects due to large spread in emissions
- Cold start
- Ambient temperature
VELOCITY BINNING

- VERSIT+ parameterises data based on velocity and acceleration
- Velocity binning shows varying behaviour between vehicles

- Emissions always high
- Optimal behaviour in certain regions of velocity
 - Under the 80 mg/km limit!
VERSIT+ parameterises data based on velocity and acceleration

- Introduce acceleration axis:
 - NOx per second logarithmic scale!

- Emissions always high
 - More emissions over short period of time
 - Constant driving → low emissions
 - Overall low emissions
PEAKED EMISSIONS - LOCAL EFFECTS

- Not only velocity and acceleration determine the emission behaviour
- For some vehicles, over 50% of the emissions occur during only 5% of the driving time
- Possibly creating emission ‘hotspots’ at intersections, motorway entranceways, etc.

Volvo V40
- Variations in emissions

Variations in emissions

Den Haag

Amsterdam

Utrecht

Rotterdam

GPS location NOx [mg/km]
PEAKED EMISSIONS - LOCAL EFFECTS

Opel Zafira
- High emissions everywhere

Volvo V40
- Variations in emissions

16 | On-road NOx emissions of 15 Euro 6 diesel cars
RESIDUAL ANALYSIS

- Not only velocity and acceleration determine emissions
 → Find secondary effects
 (cold start, SCR/LNT behaviour, …)
- Plot residual NO\textsubscript{x} versus other variables:
 - Ambient temperature
 - Engine coolant temperature
 - …
- Gives the ‘extra’ emission due to this variable

Take average NO\textsubscript{x} [g/s] per v-a bin
Calculate the difference of the current measurement with the average in that bin:

\[
\frac{NOx[i] - <NOx>}{<NOx>} = \text{Residual}
\]
COLD START

- Actual cold start longer than 5 minutes (RDE cut-off)
- LNT: limited effect
- SCR: 10% extra NO\textsubscript{x} on urban part of RDE trip
- Relative contribution expected to increase in future

Additional emission at start

Duration of cold start

Systematically higher emissions (small error band)
AMBIENT TEMPERATURE

- Mercedes C220 initially tested at temperatures < 7°C
- Second test over large range of temperatures
- Clear dependency of emissions on ambient temperature

Additional emission at low temp

![Graph](image.png)

- Residual NO\textsubscript{x} [mg/s] with error band
- Amount of data

Table:

<table>
<thead>
<tr>
<th>Ambient temperature [°C]</th>
<th>NO\textsubscript{x} residual [mg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-15</td>
</tr>
<tr>
<td>10</td>
<td>-10</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>
AMBIENT TEMPERATURE

For other vehicles: not enough data over full range of temperatures, however:

- average temperature per trip always 3-14 °C
- residuals show no significant dependency on ambient temperature
CONCLUSION

- Diesel euro 6 passenger cars show complex emission behaviour and large variations

- Large improvement required to meet the on-road RDE limits, also for the best performers (300 days till phase 1 RDE for new type approvals)

- A comprehensive measurement programme is needed to capture the full complexity of emission behaviour

- More info:
 - TNO 2016 R11177: NOx emissions of fifteen Euro 6 diesel cars
 - TNO 2016 R11123: Relation between ambient temperature and NOx emissions
TNO report
TNO 2016 R11177
NO\textsubscript{x} emissions of fifteen Euro 6 diesel cars:
Results of the Dutch LD road vehicle emission testing programme 2016

www.tno.nl/voertuigemissies
www.tno.nl/vehicle-emissions