

Cyclist target and test setup for the evaluation of Cyclist-AEB systems

Olaf Op den Camp*, Sjef van Montfort, Jeroen Uittenbogaard, Joke Welten, TNO Integrated Vehicle Safety

Overview

- Introduction
- Method for development of test matrix
- Test matrix development
- Testing system specification and realisation
- Verification
- Conclusion

Introduction

Cycling is increasingly popular

- In the Netherlands, 26% of all journeys occur by bicycle (CROW, ECF)
- Electric power-assisted bicycle: annual sales (in units) increased with factor of 10 in last 8 years in EU
- Social benefits of cycling
 - Scope for development (working, learning, recreating) in case no car / driving license
 - Elderly keep mobile avoiding social isolation
 - Environmental benefit (true zero emission)
 - Flow problem for car traffic
 - Parking problem in town centres and at workplace
 - Health of cycling
 - Traffic safety: more cyclists, less risks

Introduction

Accident trends for cyclists (Europe, Netherlands)

2012 according to CARE community road accident database as collected by the EU Member States.

30% of fatalities are bicyclists - 10% are pedestrians (2015)

Solutions to protect cyclists*

• Injury mitigation:

- Pop-up bonnet

 Time-to-collision (TTC)
 PoNR
 Crash

 Normal driving
 Driver warning
 Collision avoidance
 Collision mitigation
 Injury mitigation
 Post crash

 Image: Collision driving
 Image: Collision avoidance
 Image: Collision driving
 Image: Collision driside driving
 Image: Colliside

- Windshield airbag

- Personal protection equipment

* In car-to-cyclist accidents

5

Solutions to protect cyclists*

Collision avoidance / mitigation:

Forward collision warning

www.consumerreports.org

- Autonomous Emergency Braking

6

Objective

- Prepare the introduction of a protocol for consumer tests of Cyclist-AEB systems on board passenger cars
- Propose a test setup (incl. hardware) and test protocol for Cyclist-AEB systems based on technical/scientific considerations
- Base the tests on analysis of most relevant cyclist accident scenarios in EU countries

Timing: 2014 Q1 - 2016 Q2

Process to final test matrix

Approach

- Study databases for 6 European countries;
- Select severe car-to-cyclists accidents --> fatalities, seriously injured;
- Provide overview of distinguished accident scenarios;
- Determine the distribution of scenarios in the different countries;
- Prioritize scenarios & indicate coverage of fatalities and seriously injured.

innovation for life

11

Most common car-to-cyclist accident scenarios

• Weighted for 5* European countries upon # cyclist fatalities / million inhabitants

Typical parameter ranges for the scenarios

Based on in-depth accident studies

for life

Observation study into view-blocking obstructions

- Influence on speed profile of bicycle and car upon approach
- Posture and behaviour of bicyclist (e.g. pedaling or not) ٠

innovation

for life

14

Observation study into view-blocking obstructions

- Bicycles reduce speed with 6 km/h in case of a view-blocking obstruction
- More than 80% of all cyclists stopped pedaling

Cyclist target: soft bicyclist dummy on soft bike dummy

Version 4activeBS v5

Final CATS matrix – version June 2016

	CVNBU	СУЛВО	CVFB	CVLB		
Vehicle speed	20 – 60 km/h	10 – 40 km/h	20 – 60 km/h	30 – 60 km/h	65 - 80 km/h	
Cyclist speed	15 km/h	10 km/h	20 km/h	15 km/h	20 km/h	
Obstruction	Without	With D1=3.55m, D2=4.80m	Without	Without	Without	
Collision point	50 %	50 %	25 %	50%	25 %	
AEB / FCW	AEB	AEB	AEB	AEB	FCW	
# tests [36]	9	7	9	7	4	
Layout sketch						
Expected feasibility 2018	YES	YES	NO	YES		
Important notes:	 Main challenge in CVNBU is system robustness (AEB response after collision is unavoidable: cyclist cannot break or steer away to avoid collision). 	 Main challenge in CVNBO is the limited time for system response. 	for production vehicles in 2018, especially due to challenges in one VUT speed in the		erify that the vehicle shows ith a 25% collision point with a 30-60 km/h speed range rmance at a collision point	
	 Field-of-View is a general issue fo System robustness is a general is 	 Evaluation of FCW considers collision avoidance by steering and <u>not</u> braking. 				

Test track

FISITA WORLD AUTOMOTIVE CONGRESS BUSAN 2016

Simulation

• Decrease in performance to avoid false positive responses

The figures show the speed reduction of the AEB system at the end of a test for the different initial VUT speeds, where the markers indicate the results for one test. The upper row shows the results for a sensor field of view of $2 \times 24^{\circ}$ for the 3 different scenarios, the lower row shows the results for an FoV of $2 \times 45^{\circ}$. The line for collision avoidance is the 45° grey dashed line in each figure:

• : full collision avoidance, VUT comes to full stop • : full collision avoidance by reduction of speed • : collision, no speed reduction or speed reduction insufficient

	CVNB	CVNBO	CVFB	CVLB	
VUT speed	20-60 km/h	20-60 km/h	20-60 km/h	20-60 km/h	50-80 km/h
Cyclist speed	15 km/h	10 km/h	20 km/h	15 km/h	20 km/h
Obstruction	No	Yes	No	No	No
Impact point	50%	50%	25%	50%	25%
AEB/FCW	AEB	AEB	AEB	AEB	FCW
Nr of points	3.0	Euro NCAP proposes to postpone the intro- duction of CVNBO and CVFB until 2020.		1.5	1.5

F2016-APSD-008 **TNO** innovation for life

Conclusion and outlook

Conclusion

- Successful process to develop the Cyclist-AEB testing system
- CATS protocol including test matrix proposed to Euro NCAP AEB VRU working group
- Euro NCAP proposal for 2018 and 2020 in line with CATS findings

Outlook

- Active communication and dissemination of CATS results
- Technical briefing October 6th, 2016, Helmond (NL)
- Euro NCAP Round Robin test of Cyclist-AEB protocol (spring 2017)
- Considerations towards 2020:
 - Specification of view-blocking barrier
 - Dealing with parameter ranges in protocol
- Development of cyclist intent prediction models to support Cyclist-AEB control law
- Market introduction of Cyclist-AEB systems on more production vehicles

FISITA 2016

F2016-APSD-008 **TNO** innovation for life

