Advanced Materials for PFAS-Free Applications

Joseph Trimboli 17 April 2024

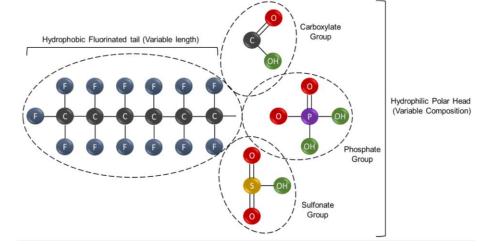
Semiconductor Sustainability

Many Opportunities to Improve Sustainability through Innovation

Topics	Challenges
Water consumption & ultra-pure water use	High use rateDifficult to recycle UPW waste
Process chemicals	Chemicals are incinerated after useToxic & difficult to recover
Fabrication techniques	 Fundamental processes are unchanged for decades Non-destructive processes not implemented
Carbon neutrality	Decrease total energy consumption & GHGsIncrease percent of renewable electricity
Emissions abatement	New equipment needed to limit emissions & HTFsValuable chemicals should be recycled
Processing e-waste	Develop processing chemistries that are simple & safeImprove recovery yields
Natural & transient electronics	New synthesis methods with simple, green-chemistriesEnhance performance
PFAS replacement	 Identify or design non-toxic alternatives Maintain performance relative to existing products

Landscape Assessment

Selection based on ideal criteria for research topics


- **High urgency** significant social & economic challenge
- **Multidisciplinary** enables knowledge building across different disciplines
- **Diverse stakeholders** interest from academia, industry, research institutes, and government
- Knowledge building R&D can serve as foundation for policy, scientific publications, and strategic decisions
- **Tangible impact** products & services arising from R&D are suitable for the market
- Aligns with TNO mission create impactful innovations for the sustainable wellbeing and prosperity of society

3

Per- and polyfluoroalkyl substances (PFAS)

A constantly evolving situation

- PFAS are any substance that contains at least one fully fluorinated methyl (CF₃-) or methylene (-CF₂-) carbon atom (without any H/Cl/Br/I attached to it).¹
 - Exact definition still under discussion
 - Generally includes hundreds to tens of thousands of chemicals²
 - Produced and used since the 1930s
- C-F bonds in PFAS lead to very stable substances
 - Environmentally persistent and resistant to complete degradation
 - Found in the blood of people and animals throughout the world
 - Relevant concentrations in the air, water and soil³

General structure for non-polymeric perfluorinated PFAS $^{\rm 3}$

- There is no comprehensive source of information on the many individual substances⁴
 - Few (dozens) PFAS are included in environmental and biological monitoring and toxicological studies to date²

1. ECHA Registry of restriction intentions until outcome: https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e18663449b

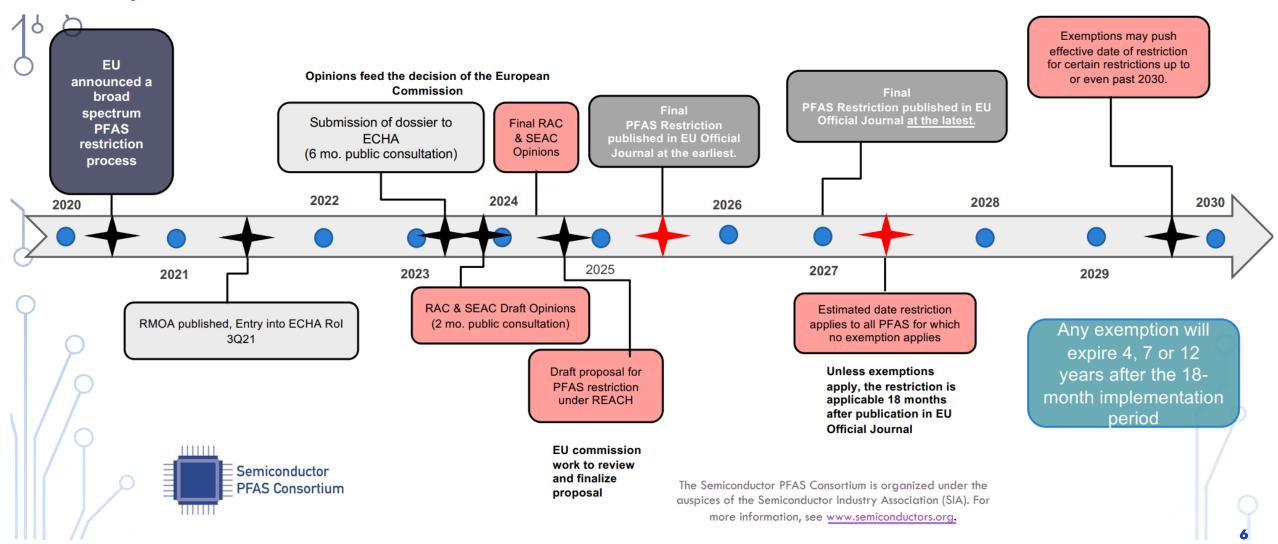
2. Characterizing PFAS Chemistries, Sources, Uses, and Regulatory Trends in U.S. and International Markets, RTI International, 20 June 2023

3. E. Panieri, *Toxics*, 2022, 10, 44. https://doi.org/10.3390/toxics10020044

^{4.} J. Gluge, Environ. Sci.: Processes Impacts, 2020, 22, 2345-2373

PFAS Regulations

Legislation naturally follows increasing public attention


*Common regulatory criteria or health advisories ¹Sum of informal poll (NJ, NH, MN)

Bottom of triangle indicates additional number of compounds; not a greater quantity by mass, concentration, or frequency of detection.

PFAS Regulations

Europe REACH

An Immense Challenge

WATER RESISTANT

CLOTHING

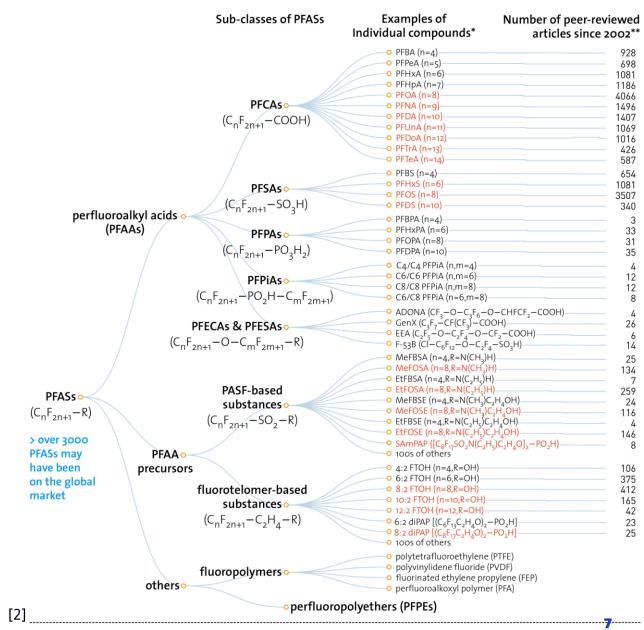
PFAS

STAIN RESISTANT

PRODUCT

PAINT

MICROWAVE


POPCORN BAGS

COSMETICS

PHOTOGRAPHY

PESTICIDES

[1]

PFASs in RED are those that have been restricted under national/regional/global regulatory or voluntary frameworks, with or without specific exemptions (for details, see OECD (2015), Risk reduction approaches for PFASs. http://oe.cd/1AN)
 ** The numbers of articles (related to all aspects of research) were retrieved from SciFinder® on Nov. 1, 2016.

1. City of Columbus - <u>Water protection</u> 2. Z. Wang, Environ. Sci. Technol. 2017, 51, 2508-2518.

STAIN RESISTANT

FURNITURE

20

FIREFIGHTING

FOAMS

ΠŁ

PERSONAL

CARE PRODUCTS

NON-STICK

COOKWARE

FAST FOOD

PACKAGING

PFAS in Semiconductors and Electronics

Essential for a vast array of products^{1,2}

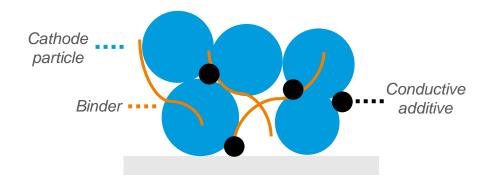
- Hydrophobic coating on printed circuit boards (PCBs)
- Barrier properties and low surface energy to photoresists
- Thermal stability
- Excellent release properties
- Air is easily dissolved (eliminates trapped bubbles)
- Gaskets and seals (elastomers)
- Surfactants
 - Improve photoresist deposition/eliminate defects
 - Low refractive index and thermal/mechanical stability
- Photoacid generators (i.e. super acids) typically \leq C4
 - No alternatives from 248 nm to EUV

Product	PFAS use in electronic components and manufacturing processes
Mobile devices	Anti-smudge on touch panel
	Smoothness
Printed circuit boards	Dielectric properties
	Heat resistance
	Solder resistance
	 Low water absorption
Electric wire and cables	Electric insulation
	Dielectric properties
	 Molding and processing
Foldable smartphones	Transparency
•	Low dielectric constant
	Flexibility
	Improve folding function
Electronic industry	 Testing electronic devices and equipment
	 Heat transfer fluids
	 Solvent systems and cleaning
	Carrier fluid/lubricant deposition
	Etching piezoelectric ceramic filters
Semiconductor industry	Photoresistance
	Photosensitivity
	 Increasing photosensitivity of photoresist
	 Generating strong acids by light irradiation
	 Control diffusion of acid to unexposed regions
	 Reducing reflection on surface
	Wetting agent
	Removing cured epoxy resins
	 Non-stick coating on carrier wafer
	 Bonding agent
	 Increase stress tolerance (fiber-reinforced
	fluoropolymer layer)
	 Separation of high voltage components
	(dielectric fluid)
	 Providing electrical signal for mechanical and
	thermal signals
	 Providing liquid crystal with dipole moment
	 Reducing static electricity build-up and dust
	attraction
	Light management films in flat panel display
	 Cleaning integrated circuit modules
	 Appring a conting

Antireflective coating

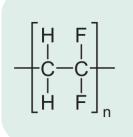
2. B. Tansel, Journal of Environmental Management 316 (2022) 115291.

8


2

PFAS Replacement Strategy

- Take inventory of critical tools, equipment, raw chemicals, and infrastructure utilizing PFAS compounds
 - In some cases, critical items may use PFAS in their production
- Requirements must be carefully defined
 - In some cases the technical function provided by PFAS is not necessary¹
 - Examples of sustainable material substitutions found in the cosmetics and clothing industry
 - The requirements for PFAS-based products in the semiconductor industry span a range of complexities
 - This impacts the maturity of PFAS-free alternatives as seen in photolithography
 - Surfactants & rinses, photoacid generators, photoresist polymers, reflective coatings, immersion topcoats
- Conduct a product survey using patent, scholarly, and trade literature
 - Goal is to reduce R&D time and risk
 - Identify commercial, near-commercial, or products that can be modified
- As needed, develop novel materials, chemistries, or treatments to meet unique requirements
- Establish and execute test procedure (e.g. mechanical testing, chemical analysis, off-gassing, UV resistance)


Case Study #1

PVDF Replacement in Cathodes

Cathode composition

- Transition metal oxide particles (active material) ~90%
- Binder ~5%
- Conductive additive ~5%

PVDF – polyvinylidene fluoride

- Chemical resistivity in harsh battery environment
- Mechanical stability
- Moderate thermal stability (melting ~170-180 C)
- Questionable stability with next-gen materials
- Impossible to recycle (burning F-containing material)
- Produced from PFAS monomers

Properties of a binder:

- Mechanical properties
 - Binds to particles, but not too strongly
 - Flexible
 - Tensile strength, adhesion strength
- Thermal stability
 - Tg and melting temps
 - Battery operation temp important & processing temp
- (Electro)chemical stability
 - Towards oxidation, cathode active material, conductive additives
 - Not soluble in organic electrolyte
 - Soluble in slurry solvent
- **Conductivity**

10

- Ionic & electronic
- Ideal binder = flexible, suitable adhesion, good conductivity (Li, e), compatible with electrolyte, environmentally friendly.

Toward Greener and Sustainable Li-Ion Cells: An Overview of Aqueous-Based Binder Systems | ACS Sustainable Chemistry & Engineering

PVDF Replacement Strategy

Input requirements for binder candidate selection

Input for electrode fabrication

Criteria/requirements: Binder material:

- Max temperature of material: 70°C during operation, 100 150°C during calendaring
- **Potential range:** 4.9 V
- Physical characteristics: stiff below 70°C and flowable above 150°C
- **Expansion under operation:** 5-10% (LNMO example)
- **Content of binder:** 0 5 wt%
- **Conductivity of binder:** Less important (in theory better than 10⁻³ S/m²)
- Suitable for blade casting in liquid systems/wet-route (near-term approach)
- Suitable for dry-route process (longer-
- term approach)
- Green solutions for solvents

a) PVDF + carbon black in batteries (scale bar = 10 um) b) Fluorine-free replacement

Binder candidate selection

- Literature review on binder materials either commercially available or novel, synthesized binder materials (polymers) for electrodes
- Literature review on solvent replacement/green alternatives/what processes are used or could be used in combination with greener solvents
- Evaluation based on requirements
 - Why PVDF?
 - What makes it the standard?
 - Which structural properties are needed?
 - Binder alternatives (commercial polymers)
 - Binder alternatives from novel synthetic approaches
 - Result Binder candidates for PVDF replacement
 - Commercially available polymer candidates
 - Design of new binder polymer (e.g. copolymer)
 - Green solvent candidates/processes in combination with green solvents

Electrode fabrication

Electrode fabrication (slurry, casting, calendaring, etc.)

- Electrode fabrication using standard PVDF binder
 - Standard solvent (=NMP)
 - Standard process (=slurry, casting, calendaring)
- Reference electrode for battery cell
- Electrode fabrication using commercial polymer candidates
 - Variation in formulation (e.g. binder content%)
 - Variation in solvent (e.g. H₂O, dry or wet)
 - Alternative polymer binders (commercial)
 - Variation in processing conditions (e.g. electrospinning, impregnation)
- Electrode fabrication using synthesized polymer candidates
 - Variant in formulation
 - Variation in solvent
 - Variation in polymer binder
 - Variation in processing conditions

Performance evaluation

1.1

1.1

1.1

- Characterization of electrode performance (T, PR, LNMO, conductivity, etc.)
- Performance evaluation of electrode in battery cell

Case Study #2

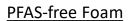
Aqueous Film-Forming Foams (AFFF)

Technology Focus

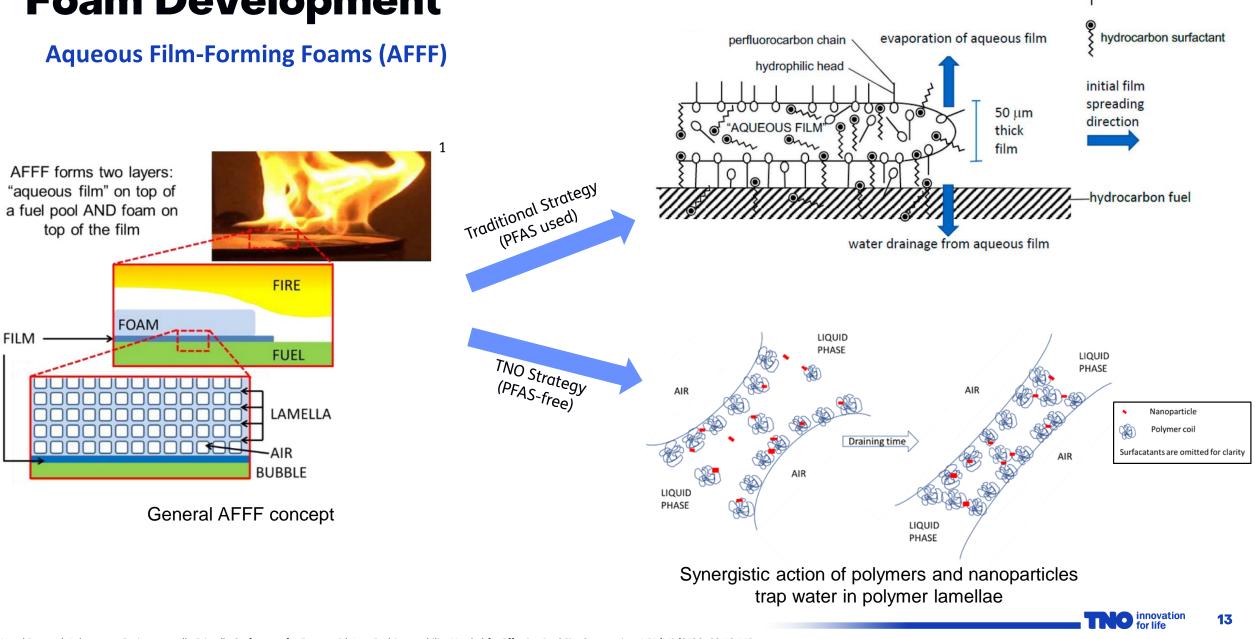
 Develop safe foams complying with MilSpec requirements by using new combinations of additives and surfactants

Research Objectives

- Enhance firefighting properties of PFAS-free foaming formulations by the action of clay nanoparticles and water-soluble polymers
- Establish relationship between the fire extinguishing performance and the types of nanoparticles, polymers, and surfactants and produce environmentally safe foams


Progress Summary

- Various particle-polymer combinations identified that were compatible with surfactants and fire suppressing agents. Formulation suspensions were stable.
- Systematic study conducted on the effect of nozzle type
- Successful 1 ft² tests with 3% concentrate
- First 28 ft² test completed in October 2023



- Surfactants
 - Polymers
 - Nanoparticles
 - Salts
 - Stabilizers

Foam Development

2

egend

fluorocarbon surfactant

1. Naval Research Laboratory, Environmentally-Friendly Surfactants for Foams with Low Fuel Permeability Needed for Effective Pool Fire Suppression, NRL/MR/6180--20-10,145 2. B. Dlugogorski, *Fire Safety Journal*, 120 (2021) 103288.

Fire-fighting tests at NRL (28 ft²)

Jet Fuel A

Conclusions

- There are many R&D opportunities to improve semiconductor sustainability
- Replacing PFAS is motivated by economic, legal, and societal factors
- Identifying PFAS replacements is often very challenging due to their unique chemistry
- Clear requirements, product assessments, and formulation strategies are needed when developing alternatives
- PFAS replacements can range from a 1:1 solution to a complex formulation

2

THANK YOU FOR YOUR TIME

