

Standards booklet for Glass Optics Procurement

We are looking for supplier partnerships for glass optics components. Reach out if you meet one or more of the specified qualifications: <u>GlassOpticalComponents@tno.nl</u>

1. Scope of the Document

Optical components are essential to a wide range of advanced applications, including scientific research, astronomy, lithography, and space exploration - domains in which TNO has established itself as a leading center of expertise in the High Tech Industry.

Within the Glass Optics Procurement group, we act as the interface between internal project teams and the supplier chain. Our goal is to foster partnerships that support our project needs, while also sourcing specialized optics for small-volume or one-off optics.

This booklet serves as a reference tool, showcasing examples of optical components used in past projects. It illustrates the level of complexity and quality standards we require. Please refer to the drawings below for further detail.

2. Outlook work

At TNO, we're always exploring new technologies and applications. For future projects, we're seeking supplier partnerships in areas like thermal IR-optical components, for which there is a need for high refractive index, low absorption optical components that can be produced cost-effectively. And new materials, for example:

- Germanium (N=4, expensive, long lead time, significant absorption at 10.3µm)
- ZnSe (N=2.4, low absorption, not nice for manufacturing)
- Chalcogenide glasses. These are designed to be easy for a manufacturing, partly as alternatives to Ge and ZnSe.

Sheet type 110 Format A3

Rq 0,00	(1,36) P Surface DETA SCAL	$\pm 0,1$ $3 \pm 0,1$ Rq 0,0015 Right surface 1 1 1 1 1 1 1 1	А В С
Apphasic (()	MATERIAL SPECIFICATION	RIGHT SURFACE	
K = -0,58276 r: 0,3mm ± 0,1mm	n _d 1,45843 v _d 67,87 0/ 5	ϕ e 18 mm Protective chamfer: 0,2mm±0,05mm λ AR $@\lambda$ =589nm	D
จิกฑ	1/ 1x0,1 2/ 2 ; 5	3/ 2; RMSi <10nm	
0,01 λ=589nm		5/ 1x0,063; L1x0,01 6/ 100 W/cm @ λ=589nm	E
General Geometric General Geometric Iso 2768	willing SC IVIIV hetric Tol. Metric Screw Thread General Tolerar - K ISO 965 6H/6g ISO 1101	nces Roundings ISO-13715 Roughness ISO-4287 Projection ISO 128 LO5 LO5 Release Status	
		Released	
t name		Part Number Assembly Number	F
EXAMPLE: Fu	sed Silica Asphere Lens	Rev. Date	
6	7	8	

У	Sag
0 mm	0 mm
20 mm	0,313822 mm
40 mm	1,255774 mm
60 mm	2,827312 mm
80 mm	5,030881 mm
100 mm	7,869927 mm
120 mm	11,348928 mm
140 mm	15,473427 mm
160 mm	20,250083 mm
175 mm	24,265213 mm

LEFT SURFACE	MATERIAL SPECIFICATION
R 637,3855 (Aspheric CX) conic constant k = -0,4776	Schott N-BK7
 Øe 350mm (λ) Uncoated 3/ 8(-) RMSi < 40nm; λ = 546,1nm (all Ø 300mm within Øe) 4/ 1,2 arcmin 5/ 5x0,20; L10x0,04 6/ - 	n _d 1,51680 v _d 64,17 0/ 10 1/ 5x0,6 2/ 4 ; 0
Indications in accordance with ISO	10110

NOTE:

Coating durability Abrasion: ISO9211-3-1-01 Adhesion: ISO9211-3-2-01 Solvent sol: ISO9211-12-3-01 Damp heat: ISO9211-3-5-07 Temp cycling: ISO9211-3-8-07 Cold: ISO9211-3-6-09 Test matrix to be agreed

Design Key Features

- Lens with spherical convexe and concave surfaces

- Coating performance requested for a wide temperature range

- Example of a "standard" custom request

Left surface:		Material s	specificat	ion:	Right surface:		
R 89,6896 (cx)		GLASS TYPE	E: NSF57		R 48,1339 (cc)		
Øe 31,00		N _e 1,8550	50 <u>+</u> 0,005		Ø _e 31,00		
3/5(-)RMSi<25nm		V _e 23,59+0,5%			3/5(-)RMSi<25nm		
4/3,5'		0/10			4/-		
5/2x0,1; L2x0,01		1/2x0,04			5/2x0,1; L2x0,01; E0,25		
6/-		2/-;-			6/-		
coating: R(532-8	50nm)<1%				coating: R(532-850nm)<1%		
bevel: 0,5					bevel: 0,3		
Rev level	Dr. Da	ate	TNO				
Next assy	Chk		Project:				
Revisions	Eng		Size A	Part:	EXAMPLE: Custom Lens + coating		
Ltr descr dt	QA	Scale 2:1	Units=mm	1	Ind. acc. ISO 10110		

A	2 3 4	5 6 7 8	9 Item R 	10 Revision Der	11 12 scription
ANTED DRAWING. MANUALLY C - B - B	Add serial no.	$\begin{array}{c} \begin{array}{c} 2,0 \\ 10 \\ 10 \\ \hline All around \\ \hline Rq 0,003 \\ \hline$			e
D COMPUTER GENE DO NOT CHANGE I D D NOT CHANGE I		(Cone top angle) (13) 3052°, 03', ""	Manu - Cone angle tolerance - Tolerance on location - Transmitted WFE requ - CaF2 substrate with hi	facturing challenge is strict of tip w.r.t outer diam irement is (very) low gh purity requirement	es eter is strict
F	detail R SCALE 10:1	DETAIL Q SCALE 5:1	LEFT SURFACE Concave cone Inner obscuration=0,2mm Øe 17,4mm Protective chamfer: 0,2±0,1 (a) AR T:>80% for 633nm Apt 0-5*	MATERIAL SPECIFICATION CaF2 IR-Grode Crystal orientation TBD 0/ 17 1/ 1 × 0,10 2/ 3 ; 4	RIGHT_SURFACE R ∞ Φe 17,4mm Protective chamfer: 0,2±0,1 (a) AR T:>80% for 633nm Δo1-0.5°
Reproductions, pellications, and two per shared grows to a version of the second secon	Trimetric View SCALE 1:1	SAG table should be use for control purposes only r [mm] Sag [mm] 0 0 2,5 -0,146189 5 -0,292412 7,5 -0,438636 10 -0,584859	3/ RMSI < 28nm 4/ 0.5mrad (0.05mm) 5/ 3x0.025 / L1x0.001 6/ NA Indications in accordance TNO innovation for life Los 270 Material CaF2 Treatment	with ISO 10110 netric Iol. Metric Screw Thread General Tolerances 58- fK ISO 965 6H/6g ISO 1101	3/ RMSL < 28nm
н1	2 3 4	<u> 12,5 -0,731082 5 6 7 8 </u>	Units mm Part Name Scale 1:1 Sheet 1 of 1 Sheet type 110 Format A2 9	: Concave Axicon	Part Number Assembly Number Rev Date Customer ID - 11 12

7	8					
Revision Descr	iption					
		/R *	r ²		1	
	Z =				A	
	_			,		
	1 +\/	′ 1-(1+	-k)*(´	1/R) ^{2*} r ²		
	v	,	<i>,</i> , ,	,		
		5,2	059±(
	k -0,89336±0,1				в	
		SAG	Table	•		
12	r	r		sag, Z		
	0.0	0.00		0.00		
I V	1	1		96139	┢	
	2	2		0,385702		
	3	3		0,872194		
	4	4		61694		
	5		2,463263			
	6		3.5	3,589579		
	6.5		4,242208			
PECIFICATION	RIGHT SURFACE			12200		
	R See Table					
64±0,01	øe 12x52,3mm				D	
	Protective chamfer: 0,1±0,1					
	(λ) -					
	3/ -(0,5	3/ -(0,5) @940nm				
	5/5x0	4/3'			⊢	
		5/ 5X0,05; L3X0,01				
Thread General Tolerances R	ounding ISO-1371	5 Roughnes	s ISO-4287	Projection	IE.	
H/6g ISO 1101		$\begin{bmatrix} -0.1 & +0.3 \\ -0.3 & +0.1 \end{bmatrix}$				
	elease Status		\square			
Ľ			220			
p	roiect			1035		
Г					1	
	out Number			and by Nivershie -		
P.	art NUMDer		Asse	maly Number	F	
ers Lens	Rev Date			Date		
С	ustomer ID -			- 410	j	
7			8			