Giampiero Gerini TNO

Giampiero Gerini

Senior Scientist at TNO and Professor at TU Eindhoven on Material Engineering from Microwaves to Optics
Giampiero Gerini TNO

'The things we are researching today will be standard in about ten to fifteen years’ time.' Giampiero Gerini is Senior Scientist in the Optics department. As far as he is concerned, research is always a combination of ground-breaking innovation and application driven research.

Professorship chair

Material engineering form Microwaves to Optics (Eindhoven University of Technology).

Research area

Metamaterials and metasurfaces are artificially engineered structures consisting of arrays of sub-wavelength scatterers embedded or deposited on a host material. While in metamaterials the scatterers alter the host material electrical parameters, realizing values not available in nature, in metasurfaces, the scatterers induce very abrupt variations of the phase, polarization and amplitude of the impinging wave, within a very thin membrane. These unconventional electromagnetic properties can lead to major breakthroughs in sensing, imaging and miniaturization.

In particular, optical metasurfaces allow all possible forms of light manipulation with unconventional, extremely thin optical devices, like: flat lenses, deflectors, polarizers, holograms, perfect absorbers, filters, beam shapers, near-to-far-field transducers, etcetera. Their extraordinary electromagnetic properties and their extremely thin dimensions allow very high levels of integration with other components and sensors.

My main research goal in this field is to enable the development of novel system/instrument concepts based on metasurfaces/metamaterials. To accomplish this goal, we develop modelling/design frameworks, we build and test demonstrators and we embed these structures in the design of complex systems. TNO has a long and world recognized competence in the development of instruments/systems for space, defence and semiconductor industry. With the use of metasurfaces and metamaterials we are enabling the development of a new generation of instruments.

In this context, my research closely contributes to the TNO roadmaps ‘Semiconductor’, ‘Space’ and ‘Information & Sensor systems’.

Top publications

  • T. A. W Wolterink, R. D. Buijs, G. Gerini, A. F. Koenderink and E. Verhagen, "Localizing nanoscale objects using nanophotonic near-field transducers" Nanophotonics, vol.10, no.6, 2021.
  • C. F. Kenworthy, L. P. Stoevelaar, A. J. Alexander, G. Gerini, “Using the near field optical trapping effect of a dielectric metasurface to improve SERS enhancement for virus detection”, Nature - Scientific Reports 11, 6873 (2021). .
  • R. Buijs, T. Wolterink, G. Gerini, F. Koenderink, and E. Verhagen, “Information advantage from polarization-multiplexed readout of nanophotonic scattering overlay sensors”, Opt. Express 29, 42900 (2021).
  • T. Wolterink, R. Buijs, G. Gerini, E. Verhagen, and F. Koenderink, “Calibration-based overlay sensing with minimal-footprint targets”, Appl. Phys. Lett. 119, 111104 (2021).
  • T. Wolterink, R. Buijs, G. Gerini, E. Verhagen, and F. Koenderink, “Programming metasurface near-fields for nano-optical sensing”, Adv. Opt. Mater. 9, 2100435 (2021).

Delft - Stieltjesweg

Stieltjesweg 1
NL-2628 CK Delft

Postal address

P.O. Box 155
NL-2600 AD Delft