New generations of wind turbines are following one another in rapid succession. Increasingly, longer blades allow for higher energy production and lower costs per kilowatt hour. We expect that in just a few year's time, the maximum length of the wind turbine blade will have been increased from around 100 to about 150 metres. However, every additional metre requires preliminary in-depth research, since the forces exerted on each blade increase very significantly. In this regard, TNO is closely collaborating with major international parties such as GE Renewable Energy and LM Wind Power, but also with Dutch companies.
Collaborate with TNO on offshore wind farms?
Contact Harald van der Mijle Meijer
Pushing boundaries
TNO has traditionally focused on developing and applying innovative designs and construction methods to push the boundaries of physics ever further. Over the past decade, TNO has been a partner in a number of pioneering EU projects, such as UpWind, INNWIND.eu, and AVATAR. The aim was to demonstrate that large offshore wind turbines are technically feasible. For INNWIND, this involved wind turbines of 10 to 20 gigawatts (GW). Several innovative designs were developed, which significantly reduced the so-called Levelized Cost of Energy (LCoE).
The aim of the AVATAR project (Advanced Aerodynamic Tools of Large Rotors), was to develop aerodynamic and aeroelastic models. This resulted in a series of improvements to the models used in the design of large turbine blades. Through these projects, industry is now able to design state of the art wind turbines.
Testing and validation
Testing and validation at full scale is of utmost importance. For testing wind turbine blades and innovative blade tip designs, we are working together with GE and LM Wind Power on the STRETCH project, and the TIADE project, respectively . Upscaling (stretching) the blade length requires implementing alternative blade concepts, different materials and new methods of attaching the blades to the rotor. In the new test centre in Wieringermeer, numerous innovative concepts for attaching blades to the hub are being tested in practice.
For the TIADE (turbine improvements for additional energy) project, we are making a number of changes to the blade that will improve the all-round airflow and thereby increase the yield. For this we use one of GE's wind turbines located at the Wieringermeer test site. All possible factors are measured, such as the airflow around the blades, loads, vibrations and more. The researchers validate the improvements to the blades using advanced measuring techniques. All the data obtained is fed into our models. It’s always about finding the ideal balance between low structural stress, and a high yield delivered at an acceptable cost.
Performance and sustainability
TNO's unique knowledge is comprised of expertise in the fields of aerodynamics, aeroelasticity and controls. It focuses not only on improving the performance, but also on the durability of wind turbine blades. One of the problems is the so-called water droplet impact on the blade tips. Due to the high speeds, the tips of the blades are subject to erosion by rainfall.
A major research programme is under way in the North Sea in which TNO is measuring rainfall and its intensity at various altitudes at strategic locations. This data is important in order to be able to properly map out the water droplet erosion, as well as the combined effects of water droplet impact and blade tip speed. Based on these findings, turbine manufacturers are able to take pre-emptive measures, to prevent wear, such as, for example, improved coatings.
Damage by raindrops
Together with partners from the GROW consortium, TNO developed in the WINDCORE project control strategies for wind turbines to limit damage to the blades caused by raindrops. For instance, a strategy was developed for optimally controlling the rotor speed during a rainstorm. Better control mechanisms reduce maintenance costs and increase wind turbine yields.
Future blades
In the 'Future Blades’ study, TNO mapped out all aspects related to the testing and certification of 145-metre blades, the probable standard length around the year 2040. The maximum yield of a 15 megawatt wind turbine of today, will by then have almost doubled. In the report of the same name, design, construction, transport, installation and maintenance were all closely examined.
Offshore wind farms move up a gear
The expansion of wind farms in the Dutch sector of the North Sea is moving up a gear. In the spring of 2022, the cabinet designated three new areas for the development of wind farms. The original target... Read moreHow large offshore wind farms produce optimal energy
With the huge increase in the number and size of wind farms in the North Sea, optimising the performance of wind turbines is becoming increasingly complex. The higher the turbines and the longer the blades,... Read moreEfficient operation and maintenance of offshore wind turbines
In the harnessing of wind energy, the maintenance of offshore wind turbines accounts for a quarter of the total costs. Over the years TNO has been researching ways to maximise maintenance efficiency and... Read moreDesigning sustainable wind turbines for the circular economy
No matter how beneficial generating wind energy is, at the end of their life wind turbine blades end up as landfill. In Europe alone, some four million tonnes of composite blade waste is disposed of in... Read moreOffshore wind conditions
For the construction of offshore wind farms, developers need a thorough knowledge of the wind conditions at the proposed wind farm location. These conditions are essential to establish the energy yield... Read more- Artificial Intelligence
- Application areas
- Use cases
- Program line 1: Safe autonomous systems in an open world
- Program line 2: Responsible human-machine interaction
- Secure learning in money laundering detection
- Fair decision making in the job market
- Secure learning in diabetes-2 advice
- Diagnosing for printer maintenance
- Subsidence monitoring
- Fair decision making in justice
- Augmented worker for smart industry
- Energy balancing for smart homes
- Secure learning in oncology research
- Innovation monitoring in policy
- News
- Defence, Safety & Security
- Roadmaps
- Operations & Human Factors
- Climate Chambers for Research into Human Performance
- Desdemona: The ultimate motion simulator
- LT Lab: the TNO learning technology laboratory
- Performance and health monitoring
- Motion sickness and performance
- The neurobiology of Stress
- NetForce Command: an alternative to hierarchical command and control
- Operational military performance in a virtual world
- SUPRA
- Simulation Live Virtual and Constructive
- Concept Development & Experimentation
- IAMD: Integrated Air & Missile Defence
- JROADS
- FACSIM
- Helicopter studies
- MARVEL / Comprehensive Approach
- TNO ACE: Advanced CD&E Environment
- Integrated approach to Dutch Royal Navy patrol ships
- Operational analysis during military operations
- SketchaWorld: from sketch to virtual world
- Camouflage
- Information & Sensor Systems
- Digital Resilience of The Netherlands
- LFAS - Low Frequency Active Sonar
- Tanker Remote Vision System
- Platform signatures
- TNO shapes the future of MMICs and RFICs
- CARPET: Computer-Aided Radar Performance Evaluation Tool
- Underwater Warfare and Security
- Wide Area Motion Imagery WAMI
- SAKAMATA: sonar and marine mammals
- PARANOID: rapid information processing
- Mine analysis and threat evaluation
- Ship acoustics and underwater acoustic signatures
- PERSEUS Wind Turbine Radar Interference Assessment tool
- Electromagnetic security
- Operating safely at sea
- Operations at sea
- Ocean Space
- National Security
- A new vision on modernizing the emergency reporting process
- Social media in the security sector
- Automatic Video Compilation and Analysis System (AVACS)
- The Dutch Cyber Cube Method: Improving Human Capital for SOCs and CSIRTs
- Concealed weapon detection
- FP7 Project IMPACT Europe
- Critical Infrastructure Protection (CIP) policies in Europe
- @MIGO: border control
- Smarter Surveillance, man, machine, synergy
- Cyber Security of Industrial Control Systems
- Privacy enhancing techniques in cyber security data sharing
- Driving Innovation in Crisis Management with DRIVER+
- Crisis management: new challenges, new opportunities
- The learning professional: resilient and deployable for the long term
- Protection, Munitions & Weapons
- Weapons systems control and analysis
- Weapon Effects & Protection Center
- Firepower
- Protection and survivability of vehicles
- Naval protection and survivability
- Infrastructure protection and survivability
- World-class ballistics research
- Countering Explosive Threats
- Materials for protection concepts
- Processing of Propellants, Explosives and Pyrotechnics
- Ammunition Safety
- Ballistic Performance and Personal Protection
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Anticipating accidents, incidents and threats
- Protecting those who protect us
- Process Safety Solutions: Expertise in Handling Hazardous Conditions Safely
- Expertise groups
- Acoustics and Sonar
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Electronic Defence
- Energetic Materials
- Explosions, Ballistics and Protection
- Human Behaviour and Organisational Innovation
- Human Machine Teaming
- Human Performance
- Intelligent Autonomous Systems
- Intelligent Imaging
- Military Operations
- Modelling, Simulation and Gaming
- Networked Organisations
- Radar Technology
- Weapon Systems
- Energy Transition
- Roadmaps
- Renewable electricity
- Towards large-scale generation of wind energy
- Offshore wind farms move up a gear
- Wind energy system integration
- Maximising the value of wind energy in the future energy mix
- Required infrastructure to integrate offshore wind into the energy system
- Safe and flexible integration and monitoring of wind farms in a hybrid energy system
- Energy islands for conversion, transport, and storage
- Wind farms in synergy with society and environment
- Keeping the electricity grid stable when there’s a surplus of wind and solar
- New wind energy technology
- Innovation and the rise of solar energy
- Solar farms respecting landscape and nature
- Solar panels on farmland
- Research innovative solar parks
- Better design of solar parks
- Savings on solar farm operations and maintenance
- Floating solar panels on inland waterbodies
- Offshore solar energy
- National Consortium Solar in Landscape
- National Consortium Solar on Water
- Field lab floating solar
- Research into environmental effects of solar, wind energy
- Solar energy on buildings and infrastructure
- Solar panels in façades
- Solar windows
- More focus on safety of solar systems
- Solar heat and PV-T
- Roofs for solar energy
- Noise barriers producing solar energy
- Solar energy in road surfaces and crash barriers
- Solar panel energy generated on dikes
- Solar and infrastructure
- Outdoor test facility for BIPV(T)
- Solar Highways
- Solar-powered cars
- Mass customization
- Solar panel efficiency
- New technologies make PV more versatile
- Webinar: Innovations in solar energy technologies
- Putting Europe back in the lead in solar panel production
- System transition
- The social aspects of the energy transition
- TNO facilities for research into environmental effects of solar and wind energy
- Effective interventions to increase energy efficiency and reduce energy poverty
- Green and Ease under one roof
- Capacity building programme for energy efficiency in industry
- Zooming in on the future to make the right choices
- Scenarios for a climate-neutral energy system
- A fair system without energy poverty
- Financing the energy transition
- LAUNCH
- Successful neighbourhood approach: motivate residents
- Towards a reliable, affordable and fair energy system
- Towards CO2 neutral industry
- Reducing CO2 emissions through capture, use and storage
- SEWGS: revolutionary CO2-reduction technology and blue hydrogen production
- STEPWISE and FReSMe: CO2 reduction solutions for the steel industry
- 3D-printing for CO2 capture productivity increase
- Multi-partner ALIGN-CCUS project
- CEMCAP
- Reduce emissions steel industry
- CO₂ capture with AVR
- On-site CO₂ Capture Services: reducing emissions cost effectively
- SEDMES: Efficient technology to convert CO2 to useful product
- Hydrogen for a sustainable energy supply
- Optimising production hydrogen
- Hydrogen storage and transport
- Hydrogen, fuel and feedstock
- H-vision: blue hydrogen to accelerate carbon-low industry
- 15 things you need to know about hydrogen
- World first: Green hydrogen production in the North Sea
- New research centre for hydrogen production
- Identifying the future international chain of green hydrogen
- Opportunities for green hydrogen for the manufacturing industry investigated
- Hydrogen from offshore wind: optimising the electricity grid
- Faraday lab: optimising and scaling up electrolysis
- Blue hydrogen paves the way for green hydrogen
- Biomass to fuels and feedstock
- ARBAHEAT - Sustainable future for coal-fired power stations possible through conversion to biomass
- AMBITION Advanced biofuel production from lignin rich residues
- BECOOL EU Brazilian cooperation on advanced biofuels
- Horti-BlueC - a new EU cooperation on reducing Bio-waste and CO2-footprint in horticulture
- UNRAVEL - valorization of lignocellulosic biomass
- MacroFuels advanced biofuels from seaweed
- BRISK2 Biofuel Research Infrastructure for Sharing Knowledge
- New facility for seaweed processing
- TORWASH technology successful for waste water treatment and recycling plastics
- Biofuels lab: Making transport more sustainable with biofuels
- Take-Off: Sustainable aviation fuels from CO2, water and green energy
- HEREWEAR: Circular textiles from locally-sourced bio-based materials
- Transition to e-fuels: a strategy for HIC Rotterdam
- Re-use of existing infrastructure to accelerate the energy transition
- Sustainable Industrial Heat System
- 4 pioneering routes to a CO2 neutral industry
- Research facility Industrial Electrification accelerates greening of Rotterdam port
- Mollier facility: innovating in industrial drying technology
- Research facility for negative CO2 emissions
- Carnot lab accelerates sustainable industrial heat management
- Using energy and raw materials efficiently in industry
- e-Missi0n MOOI: TNO supports Dow and Shell in electric cracking
- CO2 reduction requires improvement of industrial processes
- Making the industrial energy transition feasible and affordable
- Accelerating sustainable industry TNO Green Print
- Sustainable subsurface
- Geological Survey of the Netherlands
- Geological Survey of the Netherlands
- 100 years of geological mapping
- GeoTOP
- Sand, gravel and clay extraction
- GIS and other tools for interactive planning
- DINO, Data and Information of the Dutch Subsurface
- BRO: the Dutch Key Register of the Subsurface
- Sustainable use and management Flemish-Dutch subsurface
- Petroleum Geological Atlas of the Southern Permian Basin
- 3D Subsurface mapping of the Dutch offshore
- Geological Survey of the Netherlands across borders
- Towards an energy-producing environment
- Expertise
- Advisory Group for Economic Affairs
- Biobased and Circular Technologies
- Geo Data & IT
- Geomodelling
- Heat Transfer & Fluid Dynamics
- Applied Geosciences
- Solar Energy
- Solar Technologies & Applications
- Sustainable Process & Energy Systems
- Sustainable Technologies for Industrial Processes
- Wind energy
- Energy transition studies
- Industry
- Roadmaps
- Flexible & Free-form Products
- Space & Scientific Instrumentation
- Semiconductor Equipment
- Smart Industry
- Expertise groups
- Buildings, Infrastructure & Maritime
- Roadmaps
- Safe and Sustainable Living Environment
- Infrastructure
- Sustainable buildings: towards an energy-producing built environment
- Building innovation
- Greenhouse design
- Digitisation in construction
- Smart megastructures
- Expertise groups
- Circular Economy & Environment
- Roadmaps
- Circular economy
- Environment & Climate
- Sustainable Chemical Industry
- Expertise groups
- Healthy Living
- Roadmaps
- Health Technology & Digital Health
- Biomedical Health
- Work
- Youth
- Expertise groups
- Traffic & Transport
- Roadmaps
- SMART and Safe Traffic and Transport
- Societal impact for accessibility and liveability
- Decision-making information based on facts for municipalities
- Making disruptive technologies practicable
- Accessible, healthy and vibrant cities
- CITYkeys – Performance evaluation framework for smart cities and projects
- Big data ecosystems: collaborating on data-controlled cities
- Knowledge mediator puts an end to bickering
- Intact – Climate resilient critical infrastructure
- Organising mobility
- Smart mobility and logistics
- Smart vehicles
- Smart Mobility Research Centre SMRC
- Sustainable Traffic and Transport
- Sustainable Mobility and Logistics
- Improving air quality by monitoring real-world emissions
- Emission factors for road traffic
- Measuring the emissions of powered two wheelers
- Emissions of particulate matter from diesel cars
- Random Cycle Generator
- EnViVer: model traffic flow and emissions
- Measuring real-world emissions with TNO’s Smart Emissions Measurement System (SEMS)
- Measuring the emissions of trucks and buses
- Reducing Greenhouse Gas Emissions in Commercial Road Transport
- Measuring the emissions of non-road mobile machinery
- Emission measures in practice
- The transition to CO2-neutral mobility in 2050
- Sustainable Vehicles
- Innovative technologies for zero-emission vehicles
- CO2 reduction by high-efficiency Flex Fuel technology with extremely low emissions
- Actual energy consumption and emissions
- Automotive Battery Research
- Making transport more sustainable by means of electric vehicles
- Energy Efficient Electric Bus E3Bus
- eCoMove
- How hydrogen can accelerate energy transition in the transport sector
- Green performance of ships
- Expertise groups
- Information & Communication Technology
- Roadmaps
- Fast open infrastructures
- Data sharing
- Trusted ICT
- Efficiency, effectiveness, quality and the costs of systems
- Expertise groups
- Strategic Analysis & Policy
- Expertise groups
- Strategic Business Analysis
- Strategy & Policy
- Orchestrating Innovation
- Tech Transfer
Ir Harald van der Mijle Meijer
Send a question to Ir Harald van der Mijle Meijer
Your question has been sent.
Sorry! Something unexpected happened. Please try again later.