Simpler and safer digital living with self-sovereign identity
Would you like to know more about SSI or the eSSIF-Lab?
Get in contact with Sterre den Breeijen
Behind SSI - self-sovereign identity - lie cryptographic technologies, such as 'public-key cryptography', 'zero-knowledge proofs' and often blockchain. These technologies give the user control over which personal data are shared with whom, while the recipient of the personal data can quickly verify them electronically. This enables secure and efficient exchange of digital information. It creates trust in digital information transactions, also between parties who may not trust each other by nature.
ACCELERATING AND SAVING FOR BUSINESSES AND GOVERNMENT
Thanks to SSI, data sharing becomes safer, more reliable and faster. This benefits not only the consumer but also businesses and public authorities. Through SSI, companies can easily demonstrate that they comply with the new European privacy legislation. Documents no longer need to be checked on paper, which saves time. In the Netherlands alone, it is a question of saving billions of euros in administrative costs. In addition, better and faster decision-making gives a boost to customer satisfaction.
Participate in the eSSIF-Lab
On 1 November 2019 the EU Cascaded Funding project ‘eSSIF-Lab’ (European Self-Sovereign Identity Framework Lab) has started. In this project, EU funds will be made available to SMEs and start-ups that want to build or improve SSI components. The aim is to create a range of interoperable, open-source SSI components that people will actually use, not just in the Netherlands, but specifically also within Europe and perhaps world-wide. The first possibilities for SME’s and startups to contribute are expected in March 2020. To get more information about possibilities contact Oskar van Deventer.
IDENTITY SOLUTION FOR CITIZENS
SSI technology makes it possible for everyone to control his or her own data. As a consumer, you collect data about yourself and have it digitally signed once by, for example, the public authorities, banks, employers, insurers or educational institutions. From now on, this data can be used to enter into all kinds of (electronic) transactions. In the future, there will no longer be any reason to check papers when providing insurance or renting a car. By using SSI, complex administrative processes can be designed in such a way that you can arrange all your affairs online and in real time with a single click, completely privacy friendly. You can manage the data in your phone’s wallet app. And you decide what information you share with which parties.
CONVENIENCE & SECURITY
SSI is making digital life increasingly convenient. For example, webshops no longer need to store personal data while having to fill in web forms, wait for certain forms to be sent to you and scan formal documents will become a thing of the past. In addition to convenience, security is also increased. You no longer run the risk of entering passwords on the wrong website (phishing), it is no longer necessary to leave a passport copy or other sensitive information in a hotel, for example, and Google and Facebook can no longer observe you. Because all parties involved are checked, there is a basis to trust each other.
COLLABORATE WITH TNO
TNO carries out various projects around SSI. We are investigating how SSI can be made suitable for application. Together with other parties, we develop 'use cases' into proofs of concept. In the Techruption programme, TNO works with the Chamber of Commerce, banks, pension administrators and health insurers to make their customer processes more efficient and customer-friendly.
DATA SHARING: THE KEY TO FURTHER DIGITISATION
Data sharing accelerates innovation. Examples include better treatment methods through the secure sharing of patient data or the digitisation of paper processes and the use of artificial intelligence.... Read moreFeed the Future: data as a foundation for circular agriculture
Our current agricultural system offers the Dutch population a wide range of food options: from eating as much as possible for as little money as possible to organic and fair trade food. The associated... Read moreSecure multi-party computation: jointly analysing sensitive data without sharing it
The analysis of data from different sources is becoming increasingly important. At the same time, relevant data is often too sensitive to be casually shared with others. How can organizations share information... Read moreInternational Data Spaces (IDS) makes it safe and easy to exchange data
Data sharing is becoming increasingly important. Combining, enriching and analysing data in a safe and efficient manner can be of great benefit to participating parties. However, the emerging data economy... Read more
- Artificial Intelligence
- Application areas
- Use cases
- Program line 1: Safe autonomous systems in an open world
- Program line 2: Responsible human-machine interaction
- Secure learning in money laundering detection
- Fair decision making in the job market
- Secure learning in diabetes-2 advice
- Diagnosing for printer maintenance
- Subsidence monitoring
- Fair decision making in justice
- Augmented worker for smart industry
- Energy balancing for smart homes
- Secure learning in oncology research
- Innovation monitoring in policy
- News
- Defence, Safety & Security
- Roadmaps
- Operations & Human Factors
- Climate Chambers for Research into Human Performance
- Desdemona: The ultimate motion simulator
- LT Lab: the TNO learning technology laboratory
- Performance and health monitoring
- Motion sickness and performance
- The neurobiology of Stress
- NetForce Command: an alternative to hierarchical command and control
- Operational military performance in a virtual world
- SUPRA
- Simulation Live Virtual and Constructive
- Concept Development & Experimentation
- IAMD: Integrated Air & Missile Defence
- JROADS
- FACSIM
- Helicopter studies
- MARVEL / Comprehensive Approach
- TNO ACE: Advanced CD&E Environment
- Integrated approach to Dutch Royal Navy patrol ships
- Operational analysis during military operations
- SketchaWorld: from sketch to virtual world
- Camouflage
- Information & Sensor Systems
- Digital Resilience of The Netherlands
- LFAS - Low Frequency Active Sonar
- Tanker Remote Vision System
- Platform signatures
- TNO shapes the future of MMICs and RFICs
- CARPET: Computer-Aided Radar Performance Evaluation Tool
- Underwater Warfare and Security
- Wide Area Motion Imagery WAMI
- SAKAMATA: sonar and marine mammals
- PARANOID: rapid information processing
- Mine analysis and threat evaluation
- Ship acoustics and underwater acoustic signatures
- PERSEUS Wind Turbine Radar Interference Assessment tool
- Electromagnetic security
- Operating safely at sea
- Operations at sea
- Ocean Space
- National Security
- A new vision on modernizing the emergency reporting process
- Social media in the security sector
- Automatic Video Compilation and Analysis System (AVACS)
- The Dutch Cyber Cube Method: Improving Human Capital for SOCs and CSIRTs
- Concealed weapon detection
- FP7 Project IMPACT Europe
- Critical Infrastructure Protection (CIP) policies in Europe
- @MIGO: border control
- Smarter Surveillance, man, machine, synergy
- Cyber Security of Industrial Control Systems
- Privacy enhancing techniques in cyber security data sharing
- Driving Innovation in Crisis Management with DRIVER+
- Crisis management: new challenges, new opportunities
- The learning professional: resilient and deployable for the long term
- Protection, Munitions & Weapons
- Weapons systems control and analysis
- Weapon Effects & Protection Center
- Firepower
- Protection and survivability of vehicles
- Naval protection and survivability
- Infrastructure protection and survivability
- World-class ballistics research
- Countering Explosive Threats
- Materials for protection concepts
- Processing of Propellants, Explosives and Pyrotechnics
- Ammunition Safety
- Ballistic Performance and Personal Protection
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Anticipating accidents, incidents and threats
- Protecting those who protect us
- Process Safety Solutions: Expertise in Handling Hazardous Conditions Safely
- Expertise groups
- Acoustics and Sonar
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Electronic Defence
- Energetic Materials
- Explosions, Ballistics and Protection
- Human Behaviour and Organisational Innovation
- Human Machine Teaming
- Human Performance
- Intelligent Autonomous Systems
- Intelligent Imaging
- Military Operations
- Modelling, Simulation and Gaming
- Networked Organisations
- Radar Technology
- Weapon Systems
- Energy Transition
- Roadmaps
- Renewable electricity
- Towards large-scale generation of wind energy
- Offshore wind farms move up a gear
- Wind energy system integration
- Maximising the value of wind energy in the future energy mix
- Required infrastructure to integrate offshore wind into the energy system
- Safe and flexible integration and monitoring of wind farms in a hybrid energy system
- Energy islands for conversion, transport, and storage
- Wind farms in synergy with society and environment
- Keeping the electricity grid stable when there’s a surplus of wind and solar
- New wind energy technology
- Innovation and the rise of solar energy
- Solar farms respecting landscape and nature
- Solar panels on farmland
- Research innovative solar parks
- Better design of solar parks
- Savings on solar farm operations and maintenance
- Floating solar panels on inland waterbodies
- Offshore solar energy
- National Consortium Solar in Landscape
- National Consortium Solar on Water
- Field lab floating solar
- Research into environmental effects of solar, wind energy
- Solar energy on buildings and infrastructure
- Solar panels in façades
- Solar windows
- More focus on safety of solar systems
- Solar heat and PV-T
- Roofs for solar energy
- Noise barriers producing solar energy
- Solar energy in road surfaces and crash barriers
- Solar panel energy generated on dikes
- Solar and infrastructure
- Outdoor test facility for BIPV(T)
- Solar Highways
- Solar-powered cars
- Mass customization
- Solar panel efficiency
- New technologies make PV more versatile
- Webinar: Innovations in solar energy technologies
- Putting Europe back in the lead in solar panel production
- System transition
- The social aspects of the energy transition
- TNO facilities for research into environmental effects of solar and wind energy
- Effective interventions to increase energy efficiency and reduce energy poverty
- Green and Ease under one roof
- Capacity building programme for energy efficiency in industry
- Zooming in on the future to make the right choices
- Scenarios for a climate-neutral energy system
- A fair system without energy poverty
- Financing the energy transition
- LAUNCH
- Successful neighbourhood approach: motivate residents
- Towards a reliable, affordable and fair energy system
- Towards CO2 neutral industry
- Reducing CO2 emissions through capture, use and storage
- SEWGS: revolutionary CO2-reduction technology and blue hydrogen production
- STEPWISE and FReSMe: CO2 reduction solutions for the steel industry
- 3D-printing for CO2 capture productivity increase
- Multi-partner ALIGN-CCUS project
- CEMCAP
- Reduce emissions steel industry
- CO₂ capture with AVR
- On-site CO₂ Capture Services: reducing emissions cost effectively
- SEDMES: Efficient technology to convert CO2 to useful product
- Hydrogen for a sustainable energy supply
- Optimising production hydrogen
- Hydrogen storage and transport
- Hydrogen, fuel and feedstock
- H-vision: blue hydrogen to accelerate carbon-low industry
- 15 things you need to know about hydrogen
- World first: Green hydrogen production in the North Sea
- New research centre for hydrogen production
- Identifying the future international chain of green hydrogen
- Opportunities for green hydrogen for the manufacturing industry investigated
- Hydrogen from offshore wind: optimising the electricity grid
- Faraday lab: optimising and scaling up electrolysis
- Blue hydrogen paves the way for green hydrogen
- Biomass to fuels and feedstock
- ARBAHEAT - Sustainable future for coal-fired power stations possible through conversion to biomass
- AMBITION Advanced biofuel production from lignin rich residues
- BECOOL EU Brazilian cooperation on advanced biofuels
- Horti-BlueC - a new EU cooperation on reducing Bio-waste and CO2-footprint in horticulture
- UNRAVEL - valorization of lignocellulosic biomass
- MacroFuels advanced biofuels from seaweed
- BRISK2 Biofuel Research Infrastructure for Sharing Knowledge
- New facility for seaweed processing
- TORWASH technology successful for waste water treatment and recycling plastics
- Biofuels lab: Making transport more sustainable with biofuels
- Take-Off: Sustainable aviation fuels from CO2, water and green energy
- HEREWEAR: Circular textiles from locally-sourced bio-based materials
- Transition to e-fuels: a strategy for HIC Rotterdam
- Re-use of existing infrastructure to accelerate the energy transition
- Sustainable Industrial Heat System
- 4 pioneering routes to a CO2 neutral industry
- Research facility Industrial Electrification accelerates greening of Rotterdam port
- Mollier facility: innovating in industrial drying technology
- Research facility for negative CO2 emissions
- Carnot lab accelerates sustainable industrial heat management
- Using energy and raw materials efficiently in industry
- e-Missi0n MOOI: TNO supports Dow and Shell in electric cracking
- CO2 reduction requires improvement of industrial processes
- Making the industrial energy transition feasible and affordable
- Accelerating sustainable industry TNO Green Print
- Sustainable subsurface
- Geological Survey of the Netherlands
- Geological Survey of the Netherlands
- 100 years of geological mapping
- GeoTOP
- Sand, gravel and clay extraction
- GIS and other tools for interactive planning
- DINO, Data and Information of the Dutch Subsurface
- BRO: the Dutch Key Register of the Subsurface
- Sustainable use and management Flemish-Dutch subsurface
- Petroleum Geological Atlas of the Southern Permian Basin
- 3D Subsurface mapping of the Dutch offshore
- Geological Survey of the Netherlands across borders
- Towards an energy-producing environment
- Expertise
- Advisory Group for Economic Affairs
- Biobased and Circular Technologies
- Geo Data & IT
- Geomodelling
- Heat Transfer & Fluid Dynamics
- Applied Geosciences
- Solar Energy
- Solar Technologies & Applications
- Sustainable Process & Energy Systems
- Sustainable Technologies for Industrial Processes
- Wind energy
- Energy transition studies
- Industry
- Roadmaps
- Flexible & Free-form Products
- Space & Scientific Instrumentation
- Semiconductor Equipment
- Smart Industry
- Expertise groups
- Buildings, Infrastructure & Maritime
- Roadmaps
- Safe and Sustainable Living Environment
- Infrastructure
- Sustainable buildings: towards an energy-producing built environment
- Building innovation
- Greenhouse design
- Digitisation in construction
- Smart megastructures
- Expertise groups
- Circular Economy & Environment
- Roadmaps
- Circular economy
- Environment & Climate
- Sustainable Chemical Industry
- Expertise groups
- Healthy Living
- Roadmaps
- Health Technology & Digital Health
- Biomedical Health
- Work
- Youth
- Expertise groups
- Traffic & Transport
- Roadmaps
- SMART and Safe Traffic and Transport
- Societal impact for accessibility and liveability
- Decision-making information based on facts for municipalities
- Making disruptive technologies practicable
- Accessible, healthy and vibrant cities
- CITYkeys – Performance evaluation framework for smart cities and projects
- Big data ecosystems: collaborating on data-controlled cities
- Knowledge mediator puts an end to bickering
- Intact – Climate resilient critical infrastructure
- Organising mobility
- Smart mobility and logistics
- Smart vehicles
- Smart Mobility Research Centre SMRC
- Sustainable Traffic and Transport
- Sustainable Mobility and Logistics
- Improving air quality by monitoring real-world emissions
- Emission factors for road traffic
- Measuring the emissions of powered two wheelers
- Emissions of particulate matter from diesel cars
- Random Cycle Generator
- EnViVer: model traffic flow and emissions
- Measuring real-world emissions with TNO’s Smart Emissions Measurement System (SEMS)
- Measuring the emissions of trucks and buses
- Reducing Greenhouse Gas Emissions in Commercial Road Transport
- Measuring the emissions of non-road mobile machinery
- Emission measures in practice
- The transition to CO2-neutral mobility in 2050
- Sustainable Vehicles
- Innovative technologies for zero-emission vehicles
- CO2 reduction by high-efficiency Flex Fuel technology with extremely low emissions
- Actual energy consumption and emissions
- Automotive Battery Research
- Making transport more sustainable by means of electric vehicles
- Energy Efficient Electric Bus E3Bus
- eCoMove
- How hydrogen can accelerate energy transition in the transport sector
- Green performance of ships
- Expertise groups
- Information & Communication Technology
- Roadmaps
- Fast open infrastructures
- Data sharing
- Trusted ICT
- Efficiency, effectiveness, quality and the costs of systems
- Expertise groups
- Strategic Analysis & Policy
- Expertise groups
- Strategic Business Analysis
- Strategy & Policy
- Orchestrating Innovation
- Tech Transfer
Alexander van den Wall Bake
- Self Sovereign Identity
- SSI
- Digital Identity
- Privacy Enhancing Technology
- Change Management
Send a question to Alexander van den Wall Bake
Your question has been sent.
Sorry! Something unexpected happened. Please try again later.