We focus on ten societal areas.
TNO cooperates with companies, the public sector and other organisations, to apply our knowledge and expertise with and for others.
We develop knowledge not for its own sake, but for practical application.
On TNO Insights you can read in-depth interviews and articles. Get inspired by TNO’s innovations!
TNO offers you the chance to do groundbreaking work and help customers and society with innovative, practical and smart solutions.
|
Traditional control methods are facing a turning point. Development of self-learning powertrains is crucial to deal with complexity and diversity of future ultra-clean and efficient vehicles and to minimize development time and costs. Driven by societal concerns about global warming and local air quality, advanced complex powertrain concepts are studied. For these concepts, a robust and systematic approach is key to guarantee optimal performance under widely varying operating conditions. Robust control also enables the use of a wide range of renewable fuels. To minimize the development time and costs, model-based control methods play an increasingly important role. The ultimate goal is auto-calibration, in which the energy efficiency of the total powertrain is optimized online by the application of smart sensors and route information in self-learning control concepts.
My main research interests are control-oriented modeling of internal combustion engines and aftertreatment systems and model-based powertrain control. I focus on the development of optimal and robust control methods for automotive powertrain systems. This requires integration of energy and emission management strategies at system level. My research directly contributes to TNO’s program on Sustainable Vehicles.
During the past three years, innovative control solutions have been developed in order to on-line minimize energy consumption within emission limits. Using real-time models, the actual powertrain state is monitored. Information of these virtual sensors is crucial input to novel control strategies. The potential of these adaptive strategies was demonstrated on a state-of-the-art heavy-duty engine; up to 2% fuel consumption reduction by software only. Moreover, these model-based control strategies are shown to explicitly deal with varying real-world emission limits, which are associated with low emission zones.
In order to enhance fuel flexibility of future powertrains, in-cylinder blending of two fuels with different reactivity is examined. Control of these advanced combustion concepts is essential to guarantee safe and stable operation. Using a novel coordinated air-fuel path control strategy, transient operation of a six-cylinder truck engine running on Diesel and E85 was successfully demonstrated. This is an essential step towards on-road application.
Stay up to date with our latest news, activities and vacancies
TNO.nl collects and processes data in accordance with the applicable privacy regulations for an optimal user experience and marketing practices.
This data can easily be removed from your temporary profile page at any time.
You can also view our privacy statement or cookie statement.