Reliable high-density, high-performance, and for some applications, high-power microelectronics with an incredibly powerful, integrated cooling capacity. TNO’s High Performance Thermal Management Technology is making it possible.
Whether regarding power electronics in electric vehicles, server boards in data-centre racks, or 5G/6G antenna base stations, microelectronics manufacturers and suppliers are constantly challenged to improve the performance of their products. Electric-vehicle owners want longer ranges, while data centres are always on the lookout for installations that will take up less valuable floor space and use less power. Developers of antenna base stations seek sustainable, lightning-fast communication in ever-smaller, more efficient telecom infrastructures.
Want to discuss your cooling challenges?
Get in touch with Patrique Boerboom
Hundreds of times more capacity through integrated device cooling
An important way to improve the performance of microelectronics, as well as the packages into which they’re integrated, is to increase their energy density. Doing so requires the most efficient cooling possible. This can be through upscaling or downscaling, but usually, both go hand in hand: performance is upscaled while weight and size are downscaled, also regarding cooling.
TNO’s High Performance Thermal Management Technology is the solution to this twofold challenge. The technology offers hundreds of times more cooling capacity than conventional applications while being integrated, on a small scale, close or into the microelectronics themselves, thus using much less space.
Technology for active thermal management
TNO has developed and patented the disruptive microfluidic, two-phase cooling technology, which features:
- An ultrathin cooling body (0.1 mm+)
- An extremely high (500x higher) heat-transfer coefficient (>100 watt/cm2)
- An extremely low (500x lower) flow rate
- A cooling body that can be bonded on silicon wafers
- Manufacturing made possible by a range of cost-efficient techniques
The technology can be applied in numerous fields – from data centres and electric vehicles to microelectronics and active thermal management for LEDs.
Application in data centres
One of the application areas of this new technology is in microelectronics integrated into the server boards mounted in data-centre server racks.
TNO’s direct-to-chip or in-chip active cold-plate liquid-cooling technology enables the following:
- (Hyperscale) data centres with powerful server cards with GPUs and CPUs reaching thermal design powers (TDP) in excess of 400 watts and higher, in combination with highly efficient cooling
- Supercomputers/high-performance computing (HPC) not limited by excessive GPU/CPU temperatures.
- Efficient artificial-intelligence (AI) infrastructures
- Highly efficient microchannel chip cooling that will reduce global energy consumption in many application areas.
High cooling capacity for electronic Vehicles
A second application area concerns the power electronics integrated into electric cars, so-called EV power electronics. These include inverters, on-board chargers (OBC), electric motors, battery packs and battery cells/stacks.
TNO’s microfluidic, two-phase cooling technology enables the following:
- In-situ, small-scale inverter cooling
- Microchannel-cooled electric motors
- Small-scale, highly efficient, built-in charging systems
- Lightweight battery pack systems with optimal direct to battery or in battery cooling characteristics
- Integration options for all cooling circuits
With this, microfluidic cooling technology is making an important contribution to the downscaling of electronic car components, leading to weight savings and increased ranges. Important advantages for consumers (which may also convince non-electric drivers) are shorter charging times and greater battery capacities in electric vehicles, thus increasing their range.
PCB Microelectronics
A third application area is that of high-density, high-complexity, and in some applications, high-power microelectronics on interconnected printed circuit boards (PCBs).
TNO’s microfluidic, two-phase cooling technology enables the following:
- In-package (PCB-level) microfluidic cooling
- Double-sided microfluidic device cooling within packages
- Hotspot prevention of devices at high temperatures
Cooling of 5G/6G antenna base stations
Manufacturers of antenna base stations are faced with an ever-increasing need for cooling, as the density in antenna cabinets continues to increase. At present, passive cooling is used via cooling fins on the antenna. Microfluidic, two-phase cooling technology is making active cooling an option by cooling the antenna box using a closed-loop, two-phase solution.
Thanks to greatly improved cooling, manufacturers can build more compact antenna base stations, which are easier to install and are less visually polluting of urban and natural landscapes. Their compactness also opens up new integration possibilities, in lampposts, for example.
What can TNO offer?
- Ultimate thermal fluidic design for the demanding applications
- Employing advanced modelling & thermal/ flow experience
- Development of ultimate manufacturing method (AM / Conventional)
- Validation of the concept by lab experiments & Execution runs
- Support to your R&D team (system engineering, control engineering, process intensification) for complex projects
- IP license for your field of use
Would you like to know more or get involved?
Are you active in the semiconductor, automotive, or another industry faced with cooling challenges? Would you like to know more about TNO’s High Performance Thermal Management Technology and find out what we can do for you? Get in touch with Patrique Boerboom.
Get in touch with Patrique Boerboom
Contact us for a non-binding consulation to discuss your cooling challenges
Semiconductor equipment.
Every day, equipment manufacturers strive to make chips smaller, more efficient, and more powerful. And every day, they face challenges related to creating these chips in the most cost-efficient way possible.... Read moreSystem Lifetime and productivity (contamination control)
Read more- Artificial Intelligence
- Application areas
- Use cases
- Program line 1: Safe autonomous systems in an open world
- Program line 2: Responsible human-machine interaction
- Secure learning in money laundering detection
- Fair decision making in the job market
- Secure learning in diabetes-2 advice
- Diagnosing for printer maintenance
- Subsidence monitoring
- Fair decision making in justice
- Augmented worker for smart industry
- Energy balancing for smart homes
- Secure learning in oncology research
- Innovation monitoring in policy
- News
- Defence, Safety & Security
- Roadmaps
- Operations & Human Factors
- Climate Chambers for Research into Human Performance
- Desdemona: The ultimate motion simulator
- LT Lab: the TNO learning technology laboratory
- Performance and health monitoring
- Motion sickness and performance
- The neurobiology of Stress
- NetForce Command: an alternative to hierarchical command and control
- Operational military performance in a virtual world
- SUPRA
- Simulation Live Virtual and Constructive
- Concept Development & Experimentation
- IAMD: Integrated Air & Missile Defence
- JROADS
- FACSIM
- Helicopter studies
- Replacement of the F-16
- MARVEL / Comprehensive Approach
- TNO ACE: Advanced CD&E Environment
- Integrated approach to Dutch Royal Navy patrol ships
- Operational analysis during military operations
- SketchaWorld: from sketch to virtual world
- Camouflage
- Information & Sensor Systems
- Digital Resilience of The Netherlands
- LFAS - Low Frequency Active Sonar
- Tanker Remote Vision System
- Platform signatures
- TNO shapes the future of MMICs and RFICs
- CARPET: Computer-Aided Radar Performance Evaluation Tool
- Underwater Warfare and Security
- Wide Area Motion Imagery WAMI
- SAKAMATA: sonar and marine mammals
- PARANOID: rapid information processing
- Mine analysis and threat evaluation
- Ship acoustics and underwater acoustic signatures
- PERSEUS Wind Turbine Radar Interference Assessment tool
- Electromagnetic security
- Operating safely at sea
- Operations at sea
- Ocean Space
- National Security
- A new vision on modernizing the emergency reporting process
- Social media in the security sector
- Automatic Video Compilation and Analysis System (AVACS)
- The Dutch Cyber Cube Method: Improving Human Capital for SOCs and CSIRTs
- Concealed weapon detection
- FP7 Project IMPACT Europe
- Critical Infrastructure Protection (CIP) policies in Europe
- @MIGO: border control
- Smarter Surveillance, man, machine, synergy
- Cyber Security of Industrial Control Systems
- Privacy enhancing techniques in cyber security data sharing
- Driving Innovation in Crisis Management with DRIVER+
- Crisis management: new challenges, new opportunities
- The learning professional: resilient and deployable for the long term
- Protection, Munitions & Weapons
- Weapons systems control and analysis
- Weapon Effects & Protection Center
- Firepower
- Protection and survivability of vehicles
- Naval protection and survivability
- Infrastructure protection and survivability
- World-class ballistics research
- Countering Explosive Threats
- Materials for protection concepts
- Processing of Propellants, Explosives and Pyrotechnics
- Ammunition Safety
- Ballistic Performance and Personal Protection
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Anticipating accidents, incidents and threats
- Protecting those who protect us
- Process Safety Solutions: Expertise in Handling Hazardous Conditions Safely
- Expertise groups
- Acoustics and Sonar
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Electronic Defence
- Energetic Materials
- Explosions, Ballistics and Protection
- Human Behaviour and Organisational Innovation
- Human Machine Teaming
- Human Performance
- Intelligent Autonomous Systems
- Intelligent Imaging
- Military Operations
- Modelling, Simulation and Gaming
- Networked Organisations
- Radar Technology
- Weapon Systems
- Energy Transition
- Roadmaps
- Renewable electricity
- Towards large-scale generation of wind energy
- The important of support structures
- Wind turbines, fully in motion
- Innovation towards 10-20 MW offshore wind turbines
- Modeling 10MW+ turbines aerodynamically
- Design for Reliable Power Performance (D4REL)
- Optimised wind blade tip design
- Vortex-wake models in wind turbine design
- Modelling improvement wind turbine blades
- Converters for Clean, Low Cost Electricity
- Haliade X: largest wind turbine ever
- New research on blade tip improvements
- Less production per wind turbine, still higher yield
- Logistics innovative strength at home and abroad
- Wind turbine management and maintenance
- Wind farms in synergy with the environment
- Innovative methods for wind measurements
- Keeping the electricity grid stable when there’s a surplus of wind and solar
- Innovation and the rise of solar energy
- Solar farms respecting landscape and nature
- Solar panels on farmland
- Research innovative solar parks
- Better design of solar parks
- Savings on solar farm operations and maintenance
- Floating solar panels on inland waterbodies
- Offshore solar energy
- National Consortium Solar in Landscape
- National Consortium Solar on Water
- Field lab floating solar
- Research into environmental effects of solar, wind energy
- Solar energy on buildings and infrastructure
- Solar-powered cars
- Mass customization
- Solar panel efficiency
- New technologies make PV more versatile
- Webinar: Innovations in solar energy technologies
- Putting Europe back in the lead in solar panel production
- System transition
- The social aspects of the energy transition
- TNO facilities for research into environmental effects of solar and wind energy
- Effective interventions to increase energy efficiency and reduce energy poverty
- Green and Ease under one roof
- Capacity building programme for energy efficiency in industry
- Zooming in on the future to make the right choices
- Scenarios for a climate-neutral energy system
- A fair system without energy poverty
- Financing the energy transition
- LAUNCH
- Successful neighbourhood approach: motivate residents
- Towards a reliable, affordable and fair energy system
- Towards CO2 neutral industry
- Reducing CO2 emissions through capture, use and storage
- SEWGS: revolutionary CO2-reduction technology and blue hydrogen production
- STEPWISE and FReSMe: CO2 reduction solutions for the steel industry
- 3D-printing for CO2 capture productivity increase
- Multi-partner ALIGN-CCUS project
- CEMCAP
- Reduce emissions steel industry
- CO₂ capture with AVR
- On-site CO₂ Capture Services: reducing emissions cost effectively
- Hydrogen for a sustainable energy supply
- Optimising production hydrogen
- Hydrogen storage and transport
- Hydrogen, fuel and feedstock
- H-vision: blue hydrogen to accelerate carbon-low industry
- 15 things you need to know about hydrogen
- World first: Green hydrogen production in the North Sea
- New research centre for hydrogen production
- Identifying the future international chain of green hydrogen
- Opportunities for green hydrogen for the manufacturing industry investigated
- Hydrogen from offshore wind: optimising the electricity grid
- Faraday lab: optimising and scaling up electrolysis
- Blue hydrogen paves the way for green hydrogen
- Biomass to fuels and feedstock
- ARBAHEAT - Sustainable future for coal-fired power stations possible through conversion to biomass
- AMBITION Advanced biofuel production from lignin rich residues
- BECOOL EU Brazilian cooperation on advanced biofuels
- Horti-BlueC - a new EU cooperation on reducing Bio-waste and CO2-footprint in horticulture
- UNRAVEL - valorization of lignocellulosic biomass
- MacroFuels advanced biofuels from seaweed
- BRISK2 Biofuel Research Infrastructure for Sharing Knowledge
- New facility for seaweed processing
- TORWASH technology successful for waste water treatment and recycling plastics
- Biofuels lab: Making transport more sustainable with biofuels
- Take-Off: Sustainable aviation fuels from CO2, water and green energy
- HEREWEAR: Circular textiles from locally-sourced bio-based materials
- Transition to e-fuels: a strategy for HIC Rotterdam
- Re-use of existing infrastructure to accelerate the energy transition
- Sustainable Industrial Heat System
- 4 pioneering routes to a CO2 neutral industry
- Research facility Industrial Electrification accelerates greening of Rotterdam port
- Mollier facility: innovating in industrial drying technology
- Research facility for negative CO2 emissions
- Carnot lab accelerates sustainable industrial heat management
- Using energy and raw materials efficiently in industry
- e-Missi0n MOOI: TNO supports Dow and Shell in electric cracking
- CO2 reduction requires improvement of industrial processes
- Making the industrial energy transition feasible and affordable
- Sustainable subsurface
- Geological Survey of the Netherlands
- Geological Survey of the Netherlands
- 100 years of geological mapping
- GeoTOP
- Sand, gravel and clay extraction
- GIS and other tools for interactive planning
- DINO, Data and Information of the Dutch Subsurface
- BRO: the Dutch Key Register of the Subsurface
- Sustainable use and management Flemish-Dutch subsurface
- Petroleum Geological Atlas of the Southern Permian Basin
- 3D Subsurface mapping of the Dutch offshore
- Geological Survey of the Netherlands across borders
- Towards an energy-producing environment
- Expertise
- Industry
- Roadmaps
- Flexible & Free-form Products
- Space & Scientific Instrumentation
- Semiconductor Equipment
- Smart Industry
- Expertise groups
- Buildings, Infrastructure & Maritime
- Roadmaps
- Safe and Sustainable Living Environment
- Infrastructure
- Sustainable buildings: towards an energy-producing built environment
- Building innovation
- Greenhouse design
- Digitisation in construction
- Smart megastructures
- Expertise groups
- Circular Economy & Environment
- Roadmaps
- Circular economy
- Environment & Climate
- Sustainable Chemical Industry
- Expertise groups
- Healthy Living
- Roadmaps
- Health Technology & Digital Health
- Biomedical Health
- Work
- Youth
- Expertise groups
- Traffic & Transport
- Roadmaps
- SMART and Safe Traffic and Transport
- Societal impact for accessibility and liveability
- Decision-making information based on facts for municipalities
- Making disruptive technologies practicable
- Accessible, healthy and vibrant cities
- CITYkeys – Performance evaluation framework for smart cities and projects
- Big data ecosystems: collaborating on data-controlled cities
- Knowledge mediator puts an end to bickering
- Intact – Climate resilient critical infrastructure
- Organising mobility
- Smart mobility and logistics
- Smart vehicles
- Smart Mobility Research Centre SMRC
- Sustainable Traffic and Transport
- Sustainable Mobility and Logistics
- Improving air quality by monitoring real-world emissions
- Emission factors for road traffic
- Measuring the emissions of powered two wheelers
- Emissions of particulate matter from diesel cars
- Random Cycle Generator
- EnViVer: model traffic flow and emissions
- Measuring real-world emissions with TNO’s Smart Emissions Measurement System (SEMS)
- Measuring the emissions of trucks and buses
- Reducing Greenhouse Gas Emissions in Commercial Road Transport
- Measuring the emissions of non-road mobile machinery
- Emission measures in practice
- The transition to CO2-neutral mobility in 2050
- Sustainable Vehicles
- Innovative technologies for zero-emission vehicles
- CO2 reduction by high-efficiency Flex Fuel technology with extremely low emissions
- Actual energy consumption and emissions
- Hydrogen and the fuel cell
- Automotive Battery Research
- Making transport more sustainable by means of electric vehicles
- Energy Efficient Electric Bus E3Bus
- eCoMove
- Hydrogen for internal combustion engines in heavy equipment
- Green performance of ships
- Expertise groups
- Information & Communication Technology
- Roadmaps
- Fast open infrastructures
- Data sharing
- Trusted ICT
- Efficiency, effectiveness, quality and the costs of systems
- Expertise groups
- Strategic Analysis & Policy
- Expertise groups
- Strategic Business Analysis
- Strategy & Policy
- Orchestrating Innovation
- Tech Transfer
Patrique Boerboom BSc
- Semicon
- High Tech Systems
- ASMI
- NXP
- ALSI
Send a question to Patrique Boerboom BSc
Your question has been sent.
Sorry! Something unexpected happened. Please try again later.