
New research on blade tip improvements
Status project
2020 - present
In cooperation with
GE Renewable Energy & LM Wind Power
A consortium of TNO, GE Renewable Energy and LM Wind Power are collaborating on the TIADE project to develop technologies and design methods for more efficient operation of next-generation wind turbine rotors, wind farms with large rotor wakes and demonstrate them in the field.
The TIADE project touched a new milestone with the research wind turbine becoming fully operational. The innovations developed in the project will be tested on the full-scale 130 m diameter turbine recently installed in Wieringermeer, Netherlands. The turbine is powered by two-piece blades, which allows the outer 12 m of the blades to be replaced by several innovative tips.

"Innovations in wind turbine blades are essential to make renewable wind energy even more affordable." Peter Eecen, R&D Manager at TNO Wind Energy.
We are proud we will validate blade innovations and aerodynamic simulations tools in the field, together with GE Renewable Energy and LM Wind Power. Thereto advanced measurement techniques are used in a unique set-up that combines detailed wind inflow measurements and unsteady pressure measurements on the blade." Peter Eecen, R&D Manager at TNO Wind Energy.
"Our revolutionary two-piece blade design has helped us drive down the levelized cost of energy. Here, in this project, we are applying new technology to significantly increase speed and reduce cost associated with testing and validation," said Ben Hendriks, Chief Engineer Turbine System Integration at LM Wind Power.
Innovative add-ons on wind turbine blades
Various innovative blade add-ons, such as spoilers, serrations, vortex generators, ‘turbulators’ and blade tip improvements will be validated using advanced measurement techniques. The results will accelerate widescale application of rotors with higher annual energy production and thus a considerably lower cost of offshore wind energy.
These solutions can be applied to newly manufactured wind turbines in the factory, but they can partly also be retrofitted to existing offshore wind farms. With both options available, implementation of the technologies in offshore wind farms can be done from 2023.
The consortium comprising of TNO, GE Renewable Energy and LM Wind Power was established in 2020 to test new research on blade tip improvements under the three-year and ten months TIADE project, with partial funding from the ‘Topsector Energiesubsidie’ of the Dutch Ministry of Economic Affairs.
Get inspired
New North Sea monitoring station for offshore wind farm expansion
The substantial expansion of offshore wind capacity from 4.5 gigawatts in 2023 to as much as 21 GW in 2030 requires action on many fronts. One way in which TNO is contributing to this is by accurately mapping wind speeds over the North Sea.


Wind of change in recycling wind turbine blades
A new project aims to find a commercially viable and scalable solution to the looming stockpile of discarded wind turbine blades. The EoLO-HUBs (End of Life through Open HUBs) project will last 4 years.


Switch to the hybrid energy system
How will our future electricity grid remain stable and affordable? Watch the webinar from 1 February 2023 and get an insight into the technological and societal solutions for our future energy system.
Towards new methods for designing wind turbines
TNO, together with Delft-based company Whiffle, has developed a new research method for designing wind turbines that significantly reduces the gap between simulation and reality.


Offshore wind under pressure
Offshore wind energy is growing enormously, but this growth comes with challenges. To maximize the value of large volumes of wind energy in the future energy system, we need to ensure feasible business cases for developers.