From grey and blue to green hydrogen
Production from water via electrolysis with sustainable electricity from sun and wind is a CO2-free alternative. But for the production of green hydrogen, there are still technological barriers to be overcome. TNO is working on green hydrogen innovations for production, transport, storage and use as a fuel and raw material.
15 things you need to know about hydrogen
Read now!
Hydrogen Webinars
Thanks to our North Sea location, existing infrastructure and knowledge, among other things, our country has everything it needs to become a major hydrogen hub for north-western Europe. TNO is a centre of expertise in this field and works closely with key players in the energy transition and with Dutch start-ups. If you want to work with us on green hydrogen, get in contact with us.
Green hydrogen only alternative
Hydrogen plays an important role in the transition to a sustainable energy supply. At present, grey hydrogen is mainly produced by reforming natural gas for industrial applications. This releases a lot of CO2. The main applications are in the chemical industry for making ammonia and fertiliser, and for oil refining.
Apart from electricity, green hydrogen is the only alternative to using wind and solar energy on a large scale in the future sustainable energy system. Even for sectors that are difficult to decarbonise, such as high-temperature industrial processes, heavy transport and aviation, electricity from solar and wind power is not sufficient or feasible, but in many cases green hydrogen is a good alternative.
The main way to make green hydrogen is electrolysis, where water is split into hydrogen and oxygen. As a result, the extraction and integration of solar and wind energy into our energy system can be greatly expanded. However, a lot of extra capacity is needed at the electrolysis plants. Together with companies in the manufacturing industry, TNO is working on electrolysers with a significantly higher power output, a longer life span and lower costs.
Low-CO2 (blue) hydrogen as an intermediate step
As an intermediate step, low-CO2 (blue) hydrogen plays an important role, with most of the CO2 emissions, up to 90%, being captured during the production of grey hydrogen and stored, for example, in empty gas fields in the North Sea (Carbon Capture and Storage, CCS). In the H-vision project, initiated by TNO and developed with parties in the port of Rotterdam area, parties are working on this solution. That could lead to a huge step forward in making industry in our country CO2-low.
Applications of hydrogen
In our envisaged sustainable energy system, hydrogen has a number of applications. It is suitable as a clean fuel for heavy industrial processes, raw material for the production of fuels and chemicals, fuel for heavy transport by road, rail, water and eventually even aviation.
Work with us
The fluctuating energy requirement in our country is putting extra pressure on our electricity network. We can prevent this by producing hydrogen with the "overcapacity" and storing it for later use. TNO is researching this and is looking for network operators and energy suppliers to test this solution. If you are interested in a collaboration, please contact us.
Want to work with us?
Contact Lennart van der Burg
Production optimisation
TNO is working in various ways to optimise the production of green hydrogen and make it cheaper to produce. Electrolysis is a proven technology but not yet mature enough to be used on a large scale. The capacity of electrolysis plants has to be increased considerably in order to make the outlined applications possible on a large scale.
Then hydrogen will also make an important contribution to flexibility in the energy system. It enables the large-scale buffering and storage of the variable supply of solar and wind energy. As a result, this energy can be used in a targeted manner. Supply and demand can be matched over longer periods, possibly even seasons. Wind and solar energy harvested in the summer, for example, can then be used in the winter.
Would you like to know more about optimising production of green hydrogen? Learn more on this page!
Storage and transport
TNO has previously revealed a plan to conduct research into electrolysers in the North Sea. It is expected that in the future part of the hydrogen at sea will be produced on energy islands. Floating or existing platforms and existing gas pipelines can be used to bring the hydrogen to land. This is much easier and cheaper than bringing the electricity generated by the wind farms ashore via cables. Research must show whether storage of hydrogen in depleted gas fields under the North Sea is safe and profitable.
Would you like to know more about storage and transport of green hydrogen? Learn more on this page!
Fuel and raw material
TNO is involved in a large number of national and international projects in the field of sustainable mobility and logistics. We are also working on pioneering technologies such as the conversion of electricity into heat (Power2Heat), the production of hydrogen via innovative electrolysers (Power2Hydrogen), the conversion of sustainable hydrogen into fuels (Power2Fuels or E-Fuels) and the indirect thermochemical and direct electrochemical conversion of water, CO2 and nitrogen using electricity into chemicals (Power2Chemicals).
Would you like to know more about green hydrogen as a new form of fuel and feedstock? Learn more on this page!
SEWGS: revolutionary CO2-reduction technology and blue hydrogen production
In order to make existing industrial production processes cleaner, TNO has developed a technology that very efficiently captures CO2 while simultaneously producing blue hydrogen. SEWGS is a revolutionary... Read moreOptimising production of sustainable hydrogen with electrolysis
Hydrogen currently produced in our country is mainly used as a raw material for the production of fertilisers and the desulphurisation of fuels. Current hydrogen production is now based on natural gas... Read moreLarge-scale hydrogen storage and transport
With the strong expansion of the number of offshore wind farms in the coming decade to a capacity of 11.5 gigawatts in 2030, large-scale storage and transport of the generated energy in the form of hydrogen... Read moreHydrogen as raw material for industry and fuel transport
Industry uses huge amounts of hydrogen for the production of ammonia, various plastics and refining. But because the hydrogen is made from natural gas, a lot of CO2 is released. Green hydrogen produced... Read moreBlue hydrogen paves the way for green hydrogen
Hydrogen plays a key role in the energy transition because its use does not release any greenhouse gases into the atmosphere. However, green hydrogen is currently not available in large volumes and remains... Read more- Artificial Intelligence
- Application areas
- Use cases
- Program line 1: Safe autonomous systems in an open world
- Program line 2: Responsible human-machine interaction
- Secure learning in money laundering detection
- Fair decision making in the job market
- Secure learning in diabetes-2 advice
- Diagnosing for printer maintenance
- Subsidence monitoring
- Fair decision making in justice
- Augmented worker for smart industry
- Energy balancing for smart homes
- Secure learning in oncology research
- Innovation monitoring in policy
- News
- Defence, Safety & Security
- Roadmaps
- Operations & Human Factors
- Climate Chambers for Research into Human Performance
- Desdemona: The ultimate motion simulator
- LT Lab: the TNO learning technology laboratory
- Performance and health monitoring
- Motion sickness and performance
- The neurobiology of Stress
- NetForce Command: an alternative to hierarchical command and control
- Operational military performance in a virtual world
- SUPRA
- Simulation Live Virtual and Constructive
- Concept Development & Experimentation
- IAMD: Integrated Air & Missile Defence
- JROADS
- FACSIM
- Helicopter studies
- Replacement of the F-16
- MARVEL / Comprehensive Approach
- TNO ACE: Advanced CD&E Environment
- Integrated approach to Dutch Royal Navy patrol ships
- Operational analysis during military operations
- SketchaWorld: from sketch to virtual world
- Camouflage
- Information & Sensor Systems
- Digital Resilience of The Netherlands
- LFAS - Low Frequency Active Sonar
- Tanker Remote Vision System
- Platform signatures
- TNO shapes the future of MMICs and RFICs
- CARPET: Computer-Aided Radar Performance Evaluation Tool
- Underwater Warfare and Security
- Wide Area Motion Imagery WAMI
- SAKAMATA: sonar and marine mammals
- PARANOID: rapid information processing
- Mine analysis and threat evaluation
- Ship acoustics and underwater acoustic signatures
- PERSEUS Wind Turbine Radar Interference Assessment tool
- Electromagnetic security
- Operating safely at sea
- Operations at sea
- Ocean Space
- National Security
- A new vision on modernizing the emergency reporting process
- Social media in the security sector
- Automatic Video Compilation and Analysis System (AVACS)
- The Dutch Cyber Cube Method: Improving Human Capital for SOCs and CSIRTs
- Concealed weapon detection
- FP7 Project IMPACT Europe
- Critical Infrastructure Protection (CIP) policies in Europe
- @MIGO: border control
- Smarter Surveillance, man, machine, synergy
- Cyber Security of Industrial Control Systems
- Privacy enhancing techniques in cyber security data sharing
- Driving Innovation in Crisis Management with DRIVER+
- Crisis management: new challenges, new opportunities
- The learning professional: resilient and deployable for the long term
- Protection, Munitions & Weapons
- Weapons systems control and analysis
- Weapon Effects & Protection Center
- Firepower
- Protection and survivability of vehicles
- Naval protection and survivability
- Infrastructure protection and survivability
- World-class ballistics research
- Countering Explosive Threats
- Materials for protection concepts
- Processing of Propellants, Explosives and Pyrotechnics
- Ammunition Safety
- Ballistic Performance and Personal Protection
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Anticipating accidents, incidents and threats
- Protecting those who protect us
- Process Safety Solutions: Expertise in Handling Hazardous Conditions Safely
- Expertise groups
- Acoustics and Sonar
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Electronic Defence
- Energetic Materials
- Explosions, Ballistics and Protection
- Human Behaviour and Organisational Innovation
- Human Machine Teaming
- Human Performance
- Intelligent Autonomous Systems
- Intelligent Imaging
- Military Operations
- Modelling, Simulation and Gaming
- Networked Organisations
- Radar Technology
- Weapon Systems
- Energy Transition
- Roadmaps
- Renewable electricity
- Towards large-scale generation of wind energy
- The important of support structures
- Wind turbines, fully in motion
- Innovation towards 10-20 MW offshore wind turbines
- Modeling 10MW+ turbines aerodynamically
- Design for Reliable Power Performance (D4REL)
- Optimised wind blade tip design
- Vortex-wake models in wind turbine design
- Modelling improvement wind turbine blades
- Converters for Clean, Low Cost Electricity
- Haliade X: largest wind turbine ever
- New research on blade tip improvements
- Less production per wind turbine, still higher yield
- Logistics innovative strength at home and abroad
- Wind turbine management and maintenance
- Wind farms in synergy with the environment
- Innovative methods for wind measurements
- Keeping the electricity grid stable when there’s a surplus of wind and solar
- Innovation and the rise of solar energy
- Solar farms respecting landscape and nature
- Solar panels on farmland
- Research innovative solar parks
- Better design of solar parks
- Savings on solar farm operations and maintenance
- Floating solar panels on inland waterbodies
- Offshore solar energy
- National Consortium Solar in Landscape
- National Consortium Solar on Water
- Field lab floating solar
- Research into environmental effects of solar, wind energy
- Solar energy on buildings and infrastructure
- Solar panels in façades
- Solar windows
- More focus on safety of solar systems
- Solar heat and PV-T
- Roofs for solar energy
- Noise barriers producing solar energy
- Solar energy in road surfaces and crash barriers
- Solar panel energy generated on dikes
- Solar and infrastructure
- Outdoor test facility for BIPV(T)
- Solar Highways
- Solar-powered cars
- Mass customization
- Solar panel efficiency
- New technologies make PV more versatile
- Webinar: Innovations in solar energy technologies
- Putting Europe back in the lead in solar panel production
- System transition
- The social aspects of the energy transition
- TNO facilities for research into environmental effects of solar and wind energy
- Effective interventions to increase energy efficiency and reduce energy poverty
- Green and Ease under one roof
- Capacity building programme for energy efficiency in industry
- Zooming in on the future to make the right choices
- Scenarios for a climate-neutral energy system
- A fair system without energy poverty
- Financing the energy transition
- LAUNCH
- Successful neighbourhood approach: motivate residents
- Towards a reliable, affordable and fair energy system
- Towards CO2 neutral industry
- Reducing CO2 emissions through capture, use and storage
- SEWGS: revolutionary CO2-reduction technology and blue hydrogen production
- STEPWISE and FReSMe: CO2 reduction solutions for the steel industry
- 3D-printing for CO2 capture productivity increase
- Multi-partner ALIGN-CCUS project
- CEMCAP
- Reduce emissions steel industry
- CO₂ capture with AVR
- On-site CO₂ Capture Services: reducing emissions cost effectively
- SEDMES: Efficient technology to convert CO2 to useful product
- Hydrogen for a sustainable energy supply
- Optimising production hydrogen
- Hydrogen storage and transport
- Hydrogen, fuel and feedstock
- H-vision: blue hydrogen to accelerate carbon-low industry
- 15 things you need to know about hydrogen
- World first: Green hydrogen production in the North Sea
- New research centre for hydrogen production
- Identifying the future international chain of green hydrogen
- Opportunities for green hydrogen for the manufacturing industry investigated
- Hydrogen from offshore wind: optimising the electricity grid
- Faraday lab: optimising and scaling up electrolysis
- Blue hydrogen paves the way for green hydrogen
- Biomass to fuels and feedstock
- ARBAHEAT - Sustainable future for coal-fired power stations possible through conversion to biomass
- AMBITION Advanced biofuel production from lignin rich residues
- BECOOL EU Brazilian cooperation on advanced biofuels
- Horti-BlueC - a new EU cooperation on reducing Bio-waste and CO2-footprint in horticulture
- UNRAVEL - valorization of lignocellulosic biomass
- MacroFuels advanced biofuels from seaweed
- BRISK2 Biofuel Research Infrastructure for Sharing Knowledge
- New facility for seaweed processing
- TORWASH technology successful for waste water treatment and recycling plastics
- Biofuels lab: Making transport more sustainable with biofuels
- Take-Off: Sustainable aviation fuels from CO2, water and green energy
- HEREWEAR: Circular textiles from locally-sourced bio-based materials
- Transition to e-fuels: a strategy for HIC Rotterdam
- Re-use of existing infrastructure to accelerate the energy transition
- Sustainable Industrial Heat System
- 4 pioneering routes to a CO2 neutral industry
- Research facility Industrial Electrification accelerates greening of Rotterdam port
- Mollier facility: innovating in industrial drying technology
- Research facility for negative CO2 emissions
- Carnot lab accelerates sustainable industrial heat management
- Using energy and raw materials efficiently in industry
- e-Missi0n MOOI: TNO supports Dow and Shell in electric cracking
- CO2 reduction requires improvement of industrial processes
- Making the industrial energy transition feasible and affordable
- Sustainable subsurface
- Geological Survey of the Netherlands
- Geological Survey of the Netherlands
- 100 years of geological mapping
- GeoTOP
- Sand, gravel and clay extraction
- GIS and other tools for interactive planning
- DINO, Data and Information of the Dutch Subsurface
- BRO: the Dutch Key Register of the Subsurface
- Sustainable use and management Flemish-Dutch subsurface
- Petroleum Geological Atlas of the Southern Permian Basin
- 3D Subsurface mapping of the Dutch offshore
- Geological Survey of the Netherlands across borders
- Towards an energy-producing environment
- Expertise
- Industry
- Roadmaps
- Flexible & Free-form Products
- Space & Scientific Instrumentation
- Semiconductor Equipment
- Smart Industry
- Expertise groups
- Buildings, Infrastructure & Maritime
- Roadmaps
- Safe and Sustainable Living Environment
- Infrastructure
- Sustainable buildings: towards an energy-producing built environment
- Building innovation
- Greenhouse design
- Digitisation in construction
- Smart megastructures
- Expertise groups
- Circular Economy & Environment
- Roadmaps
- Circular economy
- Environment & Climate
- Sustainable Chemical Industry
- Expertise groups
- Healthy Living
- Roadmaps
- Health Technology & Digital Health
- Biomedical Health
- Work
- Youth
- Expertise groups
- Traffic & Transport
- Roadmaps
- SMART and Safe Traffic and Transport
- Societal impact for accessibility and liveability
- Decision-making information based on facts for municipalities
- Making disruptive technologies practicable
- Accessible, healthy and vibrant cities
- CITYkeys – Performance evaluation framework for smart cities and projects
- Big data ecosystems: collaborating on data-controlled cities
- Knowledge mediator puts an end to bickering
- Intact – Climate resilient critical infrastructure
- Organising mobility
- Smart mobility and logistics
- Smart vehicles
- Smart Mobility Research Centre SMRC
- Sustainable Traffic and Transport
- Sustainable Mobility and Logistics
- Improving air quality by monitoring real-world emissions
- Emission factors for road traffic
- Measuring the emissions of powered two wheelers
- Emissions of particulate matter from diesel cars
- Random Cycle Generator
- EnViVer: model traffic flow and emissions
- Measuring real-world emissions with TNO’s Smart Emissions Measurement System (SEMS)
- Measuring the emissions of trucks and buses
- Reducing Greenhouse Gas Emissions in Commercial Road Transport
- Measuring the emissions of non-road mobile machinery
- Emission measures in practice
- The transition to CO2-neutral mobility in 2050
- Sustainable Vehicles
- Innovative technologies for zero-emission vehicles
- CO2 reduction by high-efficiency Flex Fuel technology with extremely low emissions
- Actual energy consumption and emissions
- Automotive Battery Research
- Making transport more sustainable by means of electric vehicles
- Energy Efficient Electric Bus E3Bus
- eCoMove
- How hydrogen can accelerate energy transition in the transport sector
- Green performance of ships
- Expertise groups
- Information & Communication Technology
- Roadmaps
- Fast open infrastructures
- Data sharing
- Trusted ICT
- Efficiency, effectiveness, quality and the costs of systems
- Expertise groups
- Strategic Analysis & Policy
- Expertise groups
- Strategic Business Analysis
- Strategy & Policy
- Orchestrating Innovation
- Tech Transfer
Lennart van der Burg MSc
- Hydrogen Expert
- Electrolyse
- Heat networks
- Energy Transition
Send a question to Lennart van der Burg MSc
Your question has been sent.
Sorry! Something unexpected happened. Please try again later.