‘Innovations in solar energy technologies’
Watch the webinar
Solar panels are available in various configurations. Besides the familiar panels, there are bifacial solar panels and solar panels with cells for which all of the contacts are on the back.
Independent of its configuration, we can distinguish between three categories of PV technology: based on crystalline silicon wafers, based on thin-film solar cells or based on a stack of individual solar cells such as a tandem.
Silicon PV: heading for the practical limits
Over half a century old and still the most widely used type of solar panel with 95% of the global market share: crystalline silicon, derived from the Latin word ‘silex’, or flint. This has the suffix -ium because it resembles a metal. More than half of the world’s solar panels contain TNO technology. In the last decade, the efficiency of silicon solar cells which are manufactured on a large scale has increased significantly to over 20%.
In the coming years, TNO and its partners want to move closer to the expected maximum efficiency which is possible in large-scale, cost-effective production, estimated to be around 26%. We will do this by developing and applying functional layers to the silicon wafers in order to create complete solar cells. These are ultra-thin layers which can be as thin as a few nanometres (a thousandth of a micrometre). We develop these advanced technologies together with companies and other knowledge institutions in our solar lab and are at the international forefront in this field.
Thin-film modules: flexible PV application
The flexibly-applicable alternative to silicon is thin-film PV solar cells and modules. Silicon solar cells are currently around 150 micrometres (0.15 millimetres) thick, whereas thin-film is one to three micrometres. This approach also involves very different materials which can be applied so thinly that they make flexible PV modules possible.
TNO mainly focuses on two materials: Copper Indium Gallium Selenide (CIGS) and the new perovskite. CIGS solar modules are already produced on a large scale. Due to its flexibility, thin-film PV is also easier and more widely applicable than silicon. Furthermore, the modules generally have better aesthetics due to being uniform in colour. TNO is focusing on developing technologies for integrating thin-film solar cells into all kinds of products with different shapes and colours (customized products) and in packaging technologies that result in a high reliability for these products.
For its developments in thin-film PV technology, TNO collaborates in the thin-film PV lab with industry, universities and other research institutions. A great deal of research is done within the Solliance partnership in which TNO is a main partner.
Tandems: from lab to production
By combining silicon with thin-film solar cells – but also by using combinations of thin-film solar cells – much better performance can be achieved because the energy from sunlight is better utilised. TNO is working on so-called tandem constructions, which can achieve efficiencies up to about 1.4 times those of single solar cells. The better performance means that less PV surface area is needed, which is essential to a densely populated country like the Netherlands. Due to this higher yield, the system costs (with cables and support structures for the generated electricity) are comparatively low, resulting in lower kWh costs. In addition to improving the efficiency of solar panels and reducing the costs, the aim here is to scale up production processes and achieve a long lifespan for the tandem modules. Having explored and experimented in the lab, we are now moving to testing under real outdoor conditions.
Double-sided solar panels
Standard solar panels capture sunlight on one side. TNO was one of the pioneers in the development of bifacial panels, which are now used widely. Depending on the reflection of the surroundings, called albedo, these panels can provide 10-20% higher energy yield than their single-sided variant. Due to this higher yield and because the manufacturing costs are comparable, double-sided solar panels result in lower kWh costs when applied in the right PV system design. Examples include applications on large roofs, on agricultural land on which crops can grow or cattle can walk between the rows of panels, on inland bodies of water or at sea.
Back contact solar panels
Together with partners in science and industry, we are working on back contact silicon solar cells and modules. In this type of cell and module, the electrical interconnection of the cells takes place on the back, as a result of which the metal covering at the front is largely or even entirely absent and the metal patterns are hardly visible, if at all. Because the electrical connections are all on the back, there are no shading losses and resistance losses can be minimised. With industrial partners that include manufacturers of materials, equipment, cells and modules, we are working to further optimise this technology and the resulting products for building integration and cars, for example.
More information about solar panel efficiency?
Contact Arthur Weeber
- Artificial Intelligence
- Application areas
- Use cases
- Program line 1: Safe autonomous systems in an open world
- Program line 2: Responsible human-machine interaction
- Secure learning in money laundering detection
- Fair decision making in the job market
- Secure learning in diabetes-2 advice
- Diagnosing for printer maintenance
- Subsidence monitoring
- Fair decision making in justice
- Augmented worker for smart industry
- Energy balancing for smart homes
- Secure learning in oncology research
- Innovation monitoring in policy
- News
- Defence, Safety & Security
- Roadmaps
- Operations & Human Factors
- Climate Chambers for Research into Human Performance
- Desdemona: The ultimate motion simulator
- LT Lab: the TNO learning technology laboratory
- Performance and health monitoring
- Motion sickness and performance
- The neurobiology of Stress
- NetForce Command: an alternative to hierarchical command and control
- Operational military performance in a virtual world
- SUPRA
- Simulation Live Virtual and Constructive
- Concept Development & Experimentation
- IAMD: Integrated Air & Missile Defence
- JROADS
- FACSIM
- Helicopter studies
- Replacement of the F-16
- MARVEL / Comprehensive Approach
- TNO ACE: Advanced CD&E Environment
- Integrated approach to Dutch Royal Navy patrol ships
- Operational analysis during military operations
- SketchaWorld: from sketch to virtual world
- Camouflage
- Information & Sensor Systems
- Digital Resilience of The Netherlands
- LFAS - Low Frequency Active Sonar
- Tanker Remote Vision System
- Platform signatures
- TNO shapes the future of MMICs and RFICs
- CARPET: Computer-Aided Radar Performance Evaluation Tool
- Underwater Warfare and Security
- Wide Area Motion Imagery WAMI
- SAKAMATA: sonar and marine mammals
- PARANOID: rapid information processing
- Mine analysis and threat evaluation
- Ship acoustics and underwater acoustic signatures
- PERSEUS Wind Turbine Radar Interference Assessment tool
- Electromagnetic security
- Operating safely at sea
- Operations at sea
- Ocean Space
- National Security
- A new vision on modernizing the emergency reporting process
- Social media in the security sector
- Automatic Video Compilation and Analysis System (AVACS)
- The Dutch Cyber Cube Method: Improving Human Capital for SOCs and CSIRTs
- Concealed weapon detection
- FP7 Project IMPACT Europe
- Critical Infrastructure Protection (CIP) policies in Europe
- @MIGO: border control
- Smarter Surveillance, man, machine, synergy
- Cyber Security of Industrial Control Systems
- Privacy enhancing techniques in cyber security data sharing
- Driving Innovation in Crisis Management with DRIVER+
- Crisis management: new challenges, new opportunities
- The learning professional: resilient and deployable for the long term
- Protection, Munitions & Weapons
- Weapons systems control and analysis
- Weapon Effects & Protection Center
- Firepower
- Protection and survivability of vehicles
- Naval protection and survivability
- Infrastructure protection and survivability
- World-class ballistics research
- Countering Explosive Threats
- Materials for protection concepts
- Processing of Propellants, Explosives and Pyrotechnics
- Ammunition Safety
- Ballistic Performance and Personal Protection
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Anticipating accidents, incidents and threats
- Protecting those who protect us
- Process Safety Solutions: Expertise in Handling Hazardous Conditions Safely
- Expertise groups
- Acoustics and Sonar
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Electronic Defence
- Energetic Materials
- Explosions, Ballistics and Protection
- Human Behaviour and Organisational Innovation
- Human Machine Teaming
- Human Performance
- Intelligent Autonomous Systems
- Intelligent Imaging
- Military Operations
- Modelling, Simulation and Gaming
- Networked Organisations
- Radar Technology
- Weapon Systems
- Energy Transition
- Roadmaps
- Renewable electricity
- Towards large-scale generation of wind energy
- The important of support structures
- Wind turbines, fully in motion
- Innovation towards 10-20 MW offshore wind turbines
- Modeling 10MW+ turbines aerodynamically
- Design for Reliable Power Performance (D4REL)
- Optimised wind blade tip design
- Vortex-wake models in wind turbine design
- Modelling improvement wind turbine blades
- Converters for Clean, Low Cost Electricity
- Haliade X: largest wind turbine ever
- New research on blade tip improvements
- Less production per wind turbine, still higher yield
- Logistics innovative strength at home and abroad
- Wind turbine management and maintenance
- Wind farms in synergy with the environment
- Innovative methods for wind measurements
- Keeping the electricity grid stable when there’s a surplus of wind and solar
- Innovation and the rise of solar energy
- Solar farms respecting landscape and nature
- Solar panels on farmland
- Research innovative solar parks
- Better design of solar parks
- Savings on solar farm operations and maintenance
- Floating solar panels on inland waterbodies
- Offshore solar energy
- National Consortium Solar in Landscape
- National Consortium Solar on Water
- Field lab floating solar
- Research into environmental effects of solar, wind energy
- Solar energy on buildings and infrastructure
- Solar-powered cars
- Mass customization
- Solar panel efficiency
- New technologies make PV more versatile
- Webinar: Innovations in solar energy technologies
- Putting Europe back in the lead in solar panel production
- System transition
- The social aspects of the energy transition
- TNO facilities for research into environmental effects of solar and wind energy
- Effective interventions to increase energy efficiency and reduce energy poverty
- Green and Ease under one roof
- Capacity building programme for energy efficiency in industry
- Zooming in on the future to make the right choices
- Scenarios for a climate-neutral energy system
- A fair system without energy poverty
- Financing the energy transition
- LAUNCH
- Successful neighbourhood approach: motivate residents
- Towards a reliable, affordable and fair energy system
- Towards CO2 neutral industry
- Reducing CO2 emissions through capture, use and storage
- SEWGS: revolutionary CO2-reduction technology and blue hydrogen production
- STEPWISE and FReSMe: CO2 reduction solutions for the steel industry
- 3D-printing for CO2 capture productivity increase
- Multi-partner ALIGN-CCUS project
- CEMCAP
- Reduce emissions steel industry
- CO₂ capture with AVR
- On-site CO₂ Capture Services: reducing emissions cost effectively
- Hydrogen for a sustainable energy supply
- Optimising production hydrogen
- Hydrogen storage and transport
- Hydrogen, fuel and feedstock
- H-vision: blue hydrogen to accelerate carbon-low industry
- 15 things you need to know about hydrogen
- World first: Green hydrogen production in the North Sea
- New research centre for hydrogen production
- Identifying the future international chain of green hydrogen
- Opportunities for green hydrogen for the manufacturing industry investigated
- Hydrogen from offshore wind: optimising the electricity grid
- Faraday lab: optimising and scaling up electrolysis
- Blue hydrogen paves the way for green hydrogen
- Biomass to fuels and feedstock
- ARBAHEAT - Sustainable future for coal-fired power stations possible through conversion to biomass
- AMBITION Advanced biofuel production from lignin rich residues
- BECOOL EU Brazilian cooperation on advanced biofuels
- Horti-BlueC - a new EU cooperation on reducing Bio-waste and CO2-footprint in horticulture
- UNRAVEL - valorization of lignocellulosic biomass
- MacroFuels advanced biofuels from seaweed
- BRISK2 Biofuel Research Infrastructure for Sharing Knowledge
- New facility for seaweed processing
- TORWASH technology successful for waste water treatment and recycling plastics
- Biofuels lab: Making transport more sustainable with biofuels
- Take-Off: Sustainable aviation fuels from CO2, water and green energy
- HEREWEAR: Circular textiles from locally-sourced bio-based materials
- Transition to e-fuels: a strategy for HIC Rotterdam
- Re-use of existing infrastructure to accelerate the energy transition
- Sustainable Industrial Heat System
- 4 pioneering routes to a CO2 neutral industry
- Research facility Industrial Electrification accelerates greening of Rotterdam port
- Mollier facility: innovating in industrial drying technology
- Research facility for negative CO2 emissions
- Carnot lab accelerates sustainable industrial heat management
- Using energy and raw materials efficiently in industry
- e-Missi0n MOOI: TNO supports Dow and Shell in electric cracking
- CO2 reduction requires improvement of industrial processes
- Making the industrial energy transition feasible and affordable
- Sustainable subsurface
- Geological Survey of the Netherlands
- Geological Survey of the Netherlands
- 100 years of geological mapping
- GeoTOP
- Sand, gravel and clay extraction
- GIS and other tools for interactive planning
- DINO, Data and Information of the Dutch Subsurface
- BRO: the Dutch Key Register of the Subsurface
- Sustainable use and management Flemish-Dutch subsurface
- Petroleum Geological Atlas of the Southern Permian Basin
- 3D Subsurface mapping of the Dutch offshore
- Geological Survey of the Netherlands across borders
- Towards an energy-producing environment
- Expertise
- Industry
- Roadmaps
- Flexible & Free-form Products
- Space & Scientific Instrumentation
- Semiconductor Equipment
- Smart Industry
- Expertise groups
- Buildings, Infrastructure & Maritime
- Roadmaps
- Safe and Sustainable Living Environment
- Infrastructure
- Sustainable buildings: towards an energy-producing built environment
- Building innovation
- Greenhouse design
- Digitisation in construction
- Smart megastructures
- Expertise groups
- Circular Economy & Environment
- Roadmaps
- Expertise groups
- Healthy Living
- Roadmaps
- Health Technology & Digital Health
- Biomedical Health
- Enabling tomorrow’s medicine
- Organ on a chip
- Microbiome
- Lifestyle as Medicine
- Microtracer
- Preclinical NASH models
- Personalized Health: 3d printing of medicines
- Joining forces for better mobile health in Kenya
- Laboratory facilities for detection and inactivation SARS-CoV
- Prevention of chronic disease
- Healthy diet
- Allergic and inflammatory diseases
- Work
- Youth
- Expertise groups
- Traffic & Transport
- Roadmaps
- SMART and Safe Traffic and Transport
- Societal impact for accessibility and liveability
- Decision-making information based on facts for municipalities
- Making disruptive technologies practicable
- Accessible, healthy and vibrant cities
- CITYkeys – Performance evaluation framework for smart cities and projects
- Big data ecosystems: collaborating on data-controlled cities
- Knowledge mediator puts an end to bickering
- Intact – Climate resilient critical infrastructure
- Organising mobility
- Smart mobility and logistics
- Smart vehicles
- Smart Mobility Research Centre SMRC
- Sustainable Traffic and Transport
- Sustainable Mobility and Logistics
- Improving air quality by monitoring real-world emissions
- Emission factors for road traffic
- Measuring the emissions of powered two wheelers
- Emissions of particulate matter from diesel cars
- Random Cycle Generator
- EnViVer: model traffic flow and emissions
- Measuring real-world emissions with TNO’s Smart Emissions Measurement System (SEMS)
- Measuring the emissions of trucks and buses
- Reducing Greenhouse Gas Emissions in Commercial Road Transport
- Measuring the emissions of non-road mobile machinery
- Emission measures in practice
- The transition to CO2-neutral mobility in 2050
- Sustainable Vehicles
- Innovative technologies for zero-emission vehicles
- CO2 reduction by high-efficiency Flex Fuel technology with extremely low emissions
- Actual energy consumption and emissions
- Hydrogen and the fuel cell
- Automotive Battery Research
- Making transport more sustainable by means of electric vehicles
- Energy Efficient Electric Bus E3Bus
- eCoMove
- Hydrogen for internal combustion engines in heavy equipment
- Green performance of ships
- Expertise groups
- Information & Communication Technology
- Roadmaps
- Fast open infrastructures
- Data sharing
- Trusted ICT
- Efficiency, effectiveness, quality and the costs of systems
- Expertise groups
- Strategic Analysis & Policy
- Expertise groups
- Strategic Business Analysis
- Strategy & Policy
- Orchestrating Innovation
- Tech Transfer
Prof. Dr. Arthur Weeber
- PV Technologies
Send a question to Prof. Dr. Arthur Weeber
Your question has been sent.
Sorry! Something unexpected happened. Please try again later.