The vast majority of solar panels worldwide consist of crystalline silicon solar cells. Modules with thin-film photovoltaic (PV) cells, and in our case the PV foils, are a promising alternative, because they are light weight and flexible and can easier be integrated into roofs or façades in all shapes and colours. In our thin-film PV lab, we work for and with companies to boost the yield, lower the costs and to integrate thin-film PV into all kinds of products on a much larger scale.

In Eindhoven, we have state-of-the-art technologies and facilities for making, measuring, testing and analysing new materials, techniques and applications. We focus here on two materials in particular: CIGS (the combination of copper, indium, gallium and selenium) and the relatively new perovskite. Much of the research on thin-film PV is done together with industry and universities, and within the Solliance consortium in which TNO is a key partner.


In the lab, we have facilities, such as glove boxes, in which work can be done without oxygen or water. We are investigating, for example, how we can increase the yield of perovskite solar cells and bring it to the same level as that of crystalline silicon. We also want to scale-up the technology from the current lab scale of a few square centimetres to thirty centimetres wide and almost infinitely long by developing roll-to-roll process technology. Perovskite has the advantage that the raw material is cheap and it is relatively easy to apply as a very thin layer to a substrate.

We have a wide variety of deposition equipment to do that on different sizes. We also have high-quality machines to print perovskite solar cells on foils, which is an important step towards upscaling. Another key development is the combination of perovskite with crystalline silicon and CIGS, or even with a perovskite with a slightly different composition, in so-called tandems. Tandems allow a much higher power production to be achieved from the same surface area. Because crystalline silicon is still dominant in the market, companies that produce these solar panels are interested in experimenting with perovskite as an add-on.

Thin-film module technology

We mainly perform our developments on novel thin-film module technologies using CIGS. However, the technology should also be applicable to other thin-film PV technology. To optimise the performance and manufacturing process for CIGS PV foils we are working with almost all the parties worldwide that are actively involved in CIGS technology and products. We focus on improving CIGS solar cells, for example with our unique selenisation oven that allows us to experiment with materials and processes at high temperatures. We are also working on alternative protective coatings to reduce the cost of encapsulation. To test the reliability of solar cells and modules, we expose them in special climate chambers to different conditions such as alternating high and low temperatures, or combined temperatures with different degrees of humidity. Furthermore, we have equipment to carry out mechanical loads on flexible thin-film solar modules in various ways to test their stability.

Electronic circuits in combination with the module configuration in thin-film PV modules can be made in various ways. We use laser technology to develop new solutions to improve production and increase yield.

Integration lab

We are well on the way to integrating thin-film solar cells into building components, from roof tiles to façades, but also road surfaces and even cars. We have built a pilot production line that is a model for a new generation of factories that will produce flexible semi-finished products with PV functionality. This mass customization concept makes it possible to integrate solar cells into various products quickly, flexibly and affordably. In this way, we can make as much use as possible of existing surfaces and give it an additional functionality. For and with manufacturers of building elements, we develop new concepts and designs, carry out extensive tests and provide demos. Research into and upscaling of solar cell integration in the built environment is becoming increasingly important now that energy-neutral construction is the new norm and has even become a legal requirement (BENG) as of 2021.

More info about working togehter in our thin film PV lab?

Please contact Veronique Gevaerts

Our work

Solar panel efficiency continues to improve as costs fall

Solar energy is affordable and reliable. The familiar panels, generally installed on roofs, have been achieving excellent returns for years – yet there is still much to be gained. TNO predicts that the... Read more
Our work

New technologies make PV more versatile

With a global market share of 95%, crystalline silicon still forms the basis for most photovoltaic (PV) solar panels. But the potential for further improvements in performance and cost is huge. With a... Read more
Our work


Since its foundation in 2010, Solliance, which develops thin film solar cell technologies, has been breaking records. The performance of the solar cells has increased enormously in recent years. Companies... Read more
Our work

Customized module technologies for thin-film PV

Advanced customized module technologies for thin-film PV are innovated for packaging and interconnecting customized thin-film application. It is a part of the Solliance Shared Research Program for Innovative... Read more
Our work

Perovskite-based solar cells: young technology, high efficiency potential

The mineral perovskite, which is named after the Russian mineralogist Count Lev Perovski, was only used in solar cells for the first time in 2009. Since then, an ever-increasing energy yield of these so-called perovskite... Read more

Solar Technologies & Applications

TNO develops, industrialises and applies technology for the production and integration of thin-film solar cells in the environment. TNO cooperates with international partners in 'shared research programmes... Read more

Veronique Gevaerts

  • Thin-Film Solar
  • Interconnection technology
  • inkjet printing
  • OPV
  • CIGS