Dr Ton Veltkamp
- wind turbines
Developments in offshore wind aim to reduce the cost of energy even further. Many of the innovations are driven by an increasing size of the wind turbine power and energy per unit. As a consequence the turbine blades become larger and more flexible. In the past only the in-plane and out-of-plane deformations of the blade were taken into account in aeroelastic analyses. However, as the length of the blades increase the torsional deformation becomes more and more important for an optimal power production, load reductions and the avoidance of aeroelastic instabilities like flutter.
The objective of the project is to enable more accurate designs of wind turbine blades by improved modelling and validation of torsional flexibility. The added value of more accurate blade torsion calculations increases significantly for larger and thus more flexible blades. The levelized cost of electricity (LCOE) is reduced by less use of blade material because of reduced loads and an increased yield of energy (AEP) due to an optimal aeroelastic blade design with respect to power production.
The activities in the VaStBlade project include:
The result of the VaStBlades project are datasets with unique validation data, an improved structural blade model, validated aeroelastic tools and a 10MW wind turbine blade design.
Your question has been sent.
Sorry! Something unexpected happened. Please try again later.