Register now for the webinar on June 29th 2022
Discover more about our SEWGS technology
Virtual lab tour CO2 capture technology
In this virtual lab tour TNO expert Soledad van Eijk demonstrates our revolutionary co2 capture technology SEWGS. Together with partners we transform the industry and make the industrial energy transition happen.
How co2 is created in the industry
Almost all organic substances – both fossil fuels and, for example, agricultural waste streams – can be gasified into synthesis gas, a mixture of carbon monoxide (CO) and hydrogen gas (H2). Synthesis gas is also a by-product of steel production and oil refining. Until now, industry has been using the gas as a fuel or feedstock for other processes. The disadvantage of this is that the carbons in the gas are released into the atmosphere in the form of CO2.
Benefits of SEWGS
It is also possible to transform and separate synthesis gas such that blue hydrogen and CO2 remain. Blue hydrogen is hydrogen from hydrocarbons but without CO2 emissions, which industry can use as a raw material or fuel. Carbon dioxide is a raw material for various chemical products and can be stored underground.
TNO has developed the Sorption Enhanced Water Gas Shift (SEWGS) process, a revolutionary combination technology that converts synthesis gas into hydrogen and carbon dioxide. In addition, the SEWGS process separates the carbon dioxide from the hydrogen gas in the same reactor. The combination ensures a more energy-efficient conversion and almost complete CO2 removal.
How does SEWGS work?
The SEWGS process combines two process steps in one reactor. The first process is known as the water-gas shift reaction in which steam (H2O) converts carbon monoxide into carbon dioxide and hydrogen. Because this is a so-called equilibrium reaction, parts of the desired substances (hydrogen and carbon dioxide) will react back into the undesired substances (water and carbon monoxide); the reaction keeps itself in balance and it is impossible to achieve complete conversion. In order to prevent this undesired reverse reaction as much as possible, conventional processes usually use a lot of steam.
However, this is not necessary if a company uses the SEWGS process. The second process prevents this undesired reaction. The reactor contains a solid adsorbent material (hydrotalcite enriched with potassium carbonate) that selectively binds acidic substances. Carbon dioxide, also known as carbonic acid, therefore adheres to the surface of the adsorbent material. As a result, the carbon dioxide can no longer react with hydrogen. An additional advantage is that other acidic substances, such as hydrogen sulphide, also bind to the surface of the adsorbent.
The combination of these processes in one reactor results in a much more efficient process, which means that less energy is lost. Most of the captured carbon dioxide is released simply when the pressure in the reactor is reduced, but the last bit of CO2 that remains in the adsorbent material requires a steam flush. The heat from the process is suitable for this. And because the solid adsorbent can tolerate high temperatures, such a steam flush is quite possible.
What is SEWGS?
Read the 10 questions and answers about the SEWGS technology
Proven technology in projects
TNO has already successfully demonstrated the SEWGS process on an industrial scale at SSAB in Sweden. This steel producer generates blast furnace gas, or synthesis gas, when converting iron ore to steel. Normally, the company uses part of the gas to heat its own processes. What remains goes to a power station.
In the European Union-supported STEPWISE project, a SEWGS installation processed 800 cubic metres of blast furnace gas per hour from one of the steel mills. Every day, the pilot installation captured 14 tonnes of CO2. The demonstration project shows that industry can save a lot of costs by using SEWGS technology to capture CO2. The SEWGS process delivers a 25% cost reduction compared to other CO2 capture technologies, which brings the cost price down to around 33 euros per tonne of CO2 captured.
The BOF2UREA project, completed in 2020, also showed that industry can cost-effectively produce urea from another type of steel gas: Basic Oxygen Furnace (BOF) gas. The INITIATE project builds on this with a prototype demonstration on an industrial scale and in an industrial environment. SEWGS plays a crucial role in this.
CO2 CONVERSION TECHNOLOGY SEDMES
Next to this adsorption-based technologies to capture CO2 (SEWGS) TNO is also developing technologies to convert CO2 into useful products, chemicals and fuels, such as dimethyl ether (SEDMES).
Interested in CO2 capture?
Reach out to Soledad van Eijk directly
Webinar SEWGS: Transform the industry with revolutionary co2-reduction technology
In order to make existing industrial production processes cleaner, TNO has developed a technology that very efficiently captures CO2 while simultaneously producing hydrogen. Register now for the webinar... Read moreBlue hydrogen paves the way for green hydrogen
Hydrogen plays a key role in the energy transition because its use does not release any greenhouse gases into the atmosphere. However, green hydrogen is currently not available in large volumes and remains... Read moreTowards a reliable, affordable and fair energy system after the energy transition
Dutch history is sometimes described as a struggle against the elements, but is actually connected with the elements. And an alliance of Dutch people with each other. Working together, using elements... Read moreTowards CO2 neutral industry
Dutch industry is responsible for roughly one third of CO2 emissions in our country. On the road to CO2-neutral industry by 2050, the goal is to reduce these harmful emissions by half by 2030. TNO supports... Read moreSTEPWISE and FReSMe: CO2 reduction solutions for the steel industry
The STEPWISE and FReSMe projects demonstrate the cost effective CO2 capture from residual gases in the steel industry using advanced technologies y valorising the energy content of the blast furnace gas.... Read moreBasic Oxygen Furnace Gas to Urea
Accelerating the energy transition by deploying Dutch innovation Read more- Artificial Intelligence
- Application areas
- Use cases
- Program line 1: Safe autonomous systems in an open world
- Program line 2: Responsible human-machine interaction
- Secure learning in money laundering detection
- Fair decision making in the job market
- Secure learning in diabetes-2 advice
- Diagnosing for printer maintenance
- Subsidence monitoring
- Fair decision making in justice
- Augmented worker for smart industry
- Energy balancing for smart homes
- Secure learning in oncology research
- Innovation monitoring in policy
- News
- Defence, Safety & Security
- Roadmaps
- Operations & Human Factors
- Climate Chambers for Research into Human Performance
- Desdemona: The ultimate motion simulator
- LT Lab: the TNO learning technology laboratory
- Performance and health monitoring
- Motion sickness and performance
- The neurobiology of Stress
- NetForce Command: an alternative to hierarchical command and control
- Operational military performance in a virtual world
- SUPRA
- Simulation Live Virtual and Constructive
- Concept Development & Experimentation
- IAMD: Integrated Air & Missile Defence
- JROADS
- FACSIM
- Helicopter studies
- Replacement of the F-16
- MARVEL / Comprehensive Approach
- TNO ACE: Advanced CD&E Environment
- Integrated approach to Dutch Royal Navy patrol ships
- Operational analysis during military operations
- SketchaWorld: from sketch to virtual world
- Camouflage
- Information & Sensor Systems
- Digital Resilience of The Netherlands
- LFAS - Low Frequency Active Sonar
- Tanker Remote Vision System
- Platform signatures
- TNO shapes the future of MMICs and RFICs
- CARPET: Computer-Aided Radar Performance Evaluation Tool
- Underwater Warfare and Security
- Wide Area Motion Imagery WAMI
- SAKAMATA: sonar and marine mammals
- PARANOID: rapid information processing
- Mine analysis and threat evaluation
- Ship acoustics and underwater acoustic signatures
- PERSEUS Wind Turbine Radar Interference Assessment tool
- Electromagnetic security
- Operating safely at sea
- Operations at sea
- Ocean Space
- National Security
- A new vision on modernizing the emergency reporting process
- Social media in the security sector
- Automatic Video Compilation and Analysis System (AVACS)
- The Dutch Cyber Cube Method: Improving Human Capital for SOCs and CSIRTs
- Concealed weapon detection
- FP7 Project IMPACT Europe
- Critical Infrastructure Protection (CIP) policies in Europe
- @MIGO: border control
- Smarter Surveillance, man, machine, synergy
- Cyber Security of Industrial Control Systems
- Privacy enhancing techniques in cyber security data sharing
- Driving Innovation in Crisis Management with DRIVER+
- Crisis management: new challenges, new opportunities
- The learning professional: resilient and deployable for the long term
- Protection, Munitions & Weapons
- Weapons systems control and analysis
- Weapon Effects & Protection Center
- Firepower
- Protection and survivability of vehicles
- Naval protection and survivability
- Infrastructure protection and survivability
- World-class ballistics research
- Countering Explosive Threats
- Materials for protection concepts
- Processing of Propellants, Explosives and Pyrotechnics
- Ammunition Safety
- Ballistic Performance and Personal Protection
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Anticipating accidents, incidents and threats
- Protecting those who protect us
- Process Safety Solutions: Expertise in Handling Hazardous Conditions Safely
- Expertise groups
- Acoustics and Sonar
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Electronic Defence
- Energetic Materials
- Explosions, Ballistics and Protection
- Human Behaviour and Organisational Innovation
- Human Machine Teaming
- Human Performance
- Intelligent Autonomous Systems
- Intelligent Imaging
- Military Operations
- Modelling, Simulation and Gaming
- Networked Organisations
- Radar Technology
- Weapon Systems
- Energy Transition
- Roadmaps
- Renewable electricity
- Towards large-scale generation of wind energy
- The important of support structures
- Wind turbines, fully in motion
- Innovation towards 10-20 MW offshore wind turbines
- Modeling 10MW+ turbines aerodynamically
- Design for Reliable Power Performance (D4REL)
- Optimised wind blade tip design
- Vortex-wake models in wind turbine design
- Modelling improvement wind turbine blades
- Converters for Clean, Low Cost Electricity
- Haliade X: largest wind turbine ever
- New research on blade tip improvements
- Less production per wind turbine, still higher yield
- Logistics innovative strength at home and abroad
- Wind turbine management and maintenance
- Wind farms in synergy with the environment
- Innovative methods for wind measurements
- Keeping the electricity grid stable when there’s a surplus of wind and solar
- Innovation and the rise of solar energy
- Solar farms respecting landscape and nature
- Solar panels on farmland
- Research innovative solar parks
- Better design of solar parks
- Savings on solar farm operations and maintenance
- Floating solar panels on inland waterbodies
- Offshore solar energy
- National Consortium Solar in Landscape
- National Consortium Solar on Water
- Field lab floating solar
- Research into environmental effects of solar, wind energy
- Solar energy on buildings and infrastructure
- Solar panels in façades
- Solar windows
- More focus on safety of solar systems
- Solar heat and PV-T
- Roofs for solar energy
- Noise barriers producing solar energy
- Solar energy in road surfaces and crash barriers
- Solar panel energy generated on dikes
- Solar and infrastructure
- Outdoor test facility for BIPV(T)
- Solar Highways
- Solar-powered cars
- Mass customization
- Solar panel efficiency
- New technologies make PV more versatile
- Webinar: Innovations in solar energy technologies
- Putting Europe back in the lead in solar panel production
- System transition
- The social aspects of the energy transition
- TNO facilities for research into environmental effects of solar and wind energy
- Effective interventions to increase energy efficiency and reduce energy poverty
- Green and Ease under one roof
- Capacity building programme for energy efficiency in industry
- Zooming in on the future to make the right choices
- Scenarios for a climate-neutral energy system
- A fair system without energy poverty
- Financing the energy transition
- LAUNCH
- Successful neighbourhood approach: motivate residents
- Towards a reliable, affordable and fair energy system
- Towards CO2 neutral industry
- Reducing CO2 emissions through capture, use and storage
- SEWGS: revolutionary CO2-reduction technology and blue hydrogen production
- STEPWISE and FReSMe: CO2 reduction solutions for the steel industry
- 3D-printing for CO2 capture productivity increase
- Multi-partner ALIGN-CCUS project
- CEMCAP
- Reduce emissions steel industry
- CO₂ capture with AVR
- On-site CO₂ Capture Services: reducing emissions cost effectively
- SEDMES: Efficient technology to convert CO2 to useful product
- Hydrogen for a sustainable energy supply
- Optimising production hydrogen
- Hydrogen storage and transport
- Hydrogen, fuel and feedstock
- H-vision: blue hydrogen to accelerate carbon-low industry
- 15 things you need to know about hydrogen
- World first: Green hydrogen production in the North Sea
- New research centre for hydrogen production
- Identifying the future international chain of green hydrogen
- Opportunities for green hydrogen for the manufacturing industry investigated
- Hydrogen from offshore wind: optimising the electricity grid
- Faraday lab: optimising and scaling up electrolysis
- Blue hydrogen paves the way for green hydrogen
- Biomass to fuels and feedstock
- ARBAHEAT - Sustainable future for coal-fired power stations possible through conversion to biomass
- AMBITION Advanced biofuel production from lignin rich residues
- BECOOL EU Brazilian cooperation on advanced biofuels
- Horti-BlueC - a new EU cooperation on reducing Bio-waste and CO2-footprint in horticulture
- UNRAVEL - valorization of lignocellulosic biomass
- MacroFuels advanced biofuels from seaweed
- BRISK2 Biofuel Research Infrastructure for Sharing Knowledge
- New facility for seaweed processing
- TORWASH technology successful for waste water treatment and recycling plastics
- Biofuels lab: Making transport more sustainable with biofuels
- Take-Off: Sustainable aviation fuels from CO2, water and green energy
- HEREWEAR: Circular textiles from locally-sourced bio-based materials
- Transition to e-fuels: a strategy for HIC Rotterdam
- Re-use of existing infrastructure to accelerate the energy transition
- Sustainable Industrial Heat System
- 4 pioneering routes to a CO2 neutral industry
- Research facility Industrial Electrification accelerates greening of Rotterdam port
- Mollier facility: innovating in industrial drying technology
- Research facility for negative CO2 emissions
- Carnot lab accelerates sustainable industrial heat management
- Using energy and raw materials efficiently in industry
- e-Missi0n MOOI: TNO supports Dow and Shell in electric cracking
- CO2 reduction requires improvement of industrial processes
- Making the industrial energy transition feasible and affordable
- Sustainable subsurface
- Geological Survey of the Netherlands
- Geological Survey of the Netherlands
- 100 years of geological mapping
- GeoTOP
- Sand, gravel and clay extraction
- GIS and other tools for interactive planning
- DINO, Data and Information of the Dutch Subsurface
- BRO: the Dutch Key Register of the Subsurface
- Sustainable use and management Flemish-Dutch subsurface
- Petroleum Geological Atlas of the Southern Permian Basin
- 3D Subsurface mapping of the Dutch offshore
- Geological Survey of the Netherlands across borders
- Towards an energy-producing environment
- Expertise
- Industry
- Roadmaps
- Flexible & Free-form Products
- Space & Scientific Instrumentation
- Semiconductor Equipment
- Smart Industry
- Expertise groups
- Buildings, Infrastructure & Maritime
- Roadmaps
- Safe and Sustainable Living Environment
- Infrastructure
- Sustainable buildings: towards an energy-producing built environment
- Building innovation
- Greenhouse design
- Digitisation in construction
- Smart megastructures
- Expertise groups
- Circular Economy & Environment
- Roadmaps
- Circular economy
- Environment & Climate
- Sustainable Chemical Industry
- Expertise groups
- Healthy Living
- Roadmaps
- Health Technology & Digital Health
- Biomedical Health
- Work
- Youth
- Expertise groups
- Traffic & Transport
- Roadmaps
- SMART and Safe Traffic and Transport
- Societal impact for accessibility and liveability
- Decision-making information based on facts for municipalities
- Making disruptive technologies practicable
- Accessible, healthy and vibrant cities
- CITYkeys – Performance evaluation framework for smart cities and projects
- Big data ecosystems: collaborating on data-controlled cities
- Knowledge mediator puts an end to bickering
- Intact – Climate resilient critical infrastructure
- Organising mobility
- Smart mobility and logistics
- Smart vehicles
- Smart Mobility Research Centre SMRC
- Sustainable Traffic and Transport
- Sustainable Mobility and Logistics
- Improving air quality by monitoring real-world emissions
- Emission factors for road traffic
- Measuring the emissions of powered two wheelers
- Emissions of particulate matter from diesel cars
- Random Cycle Generator
- EnViVer: model traffic flow and emissions
- Measuring real-world emissions with TNO’s Smart Emissions Measurement System (SEMS)
- Measuring the emissions of trucks and buses
- Reducing Greenhouse Gas Emissions in Commercial Road Transport
- Measuring the emissions of non-road mobile machinery
- Emission measures in practice
- The transition to CO2-neutral mobility in 2050
- Sustainable Vehicles
- Innovative technologies for zero-emission vehicles
- CO2 reduction by high-efficiency Flex Fuel technology with extremely low emissions
- Actual energy consumption and emissions
- Automotive Battery Research
- Making transport more sustainable by means of electric vehicles
- Energy Efficient Electric Bus E3Bus
- eCoMove
- How hydrogen can accelerate energy transition in the transport sector
- Green performance of ships
- Expertise groups
- Information & Communication Technology
- Roadmaps
- Fast open infrastructures
- Data sharing
- Trusted ICT
- Efficiency, effectiveness, quality and the costs of systems
- Expertise groups
- Strategic Analysis & Policy
- Expertise groups
- Strategic Business Analysis
- Strategy & Policy
- Orchestrating Innovation
- Tech Transfer
Soledad van Eijk
Send a question to Soledad van Eijk
Your question has been sent.
Sorry! Something unexpected happened. Please try again later.