Natural Language Processing combats manual text analysis
We’re constantly collecting more data, for example from camera images and text documents. This can provide us with relevant information. However, data is not always stored in a structured manner. This makes it difficult to retrieve the relevant information. Natural Language Processing (NLP) is an AI technique that tackles this problem.
What is natural language processing?
NLP combines the techniques of statistics with machine learning. This makes it possible to extract keywords from a text. We can then use this to make important classifications. TNO uses NLP to extract information from extensive, unstructured textual data in a more automated way.
TNO automatically creates taxonomies with natural language processing
You can use jargon to better streamline and standardise processes, for example in the form of a taxonomy or ontology. However, matching jargon within a field is a time-consuming exercise.
TNO uses NLP to identify important terms from a set of documents and determine their mutual relationships. We do this by:
- combining syntactic information (sentence construction)
- keyword extraction
- web sources
- semantic embedding methods
The taxonomy can then be used as input for an expert session.
Natural language processing is relevant for trend prediction
At TNO, we use our tools to automatically extract information from documents. We can also make predictions, such as in the foresight domain. Using the Horizon Scanner, we explore and extract from relevant websites, blogs and documents. This allows us to retrieve relevant information and to show trends.
Trend analysis shows us that the term deep learning is now being mentioned much more frequently within the computer vision domain than it was ten years ago. In addition, we can classify the documents automatically. For example, by a particular topic or field. We can also use blogs to conduct sentiment analysis and find out whether terms are being described more positively or negatively.
Get inspired
‘Giant AI goes down the European road’
TNO supports the alarming call of the Future of Life Institute regarding AI. Regulation is urgent and cannot be left solely to the market. Read TNO's response.


AI Systems Engineering & Lifecycle Management
The AI system for the future. At TNO, we work on AI systems that remain reliable and can handle new functions in the future.


Rob de Wijk on the rise of AI in geopolitical context
Anne Fleur van Veenstra, director of science at TNO’s SA&P unit, interviews Rob de Wijk, emeritus professor of international relations in Leiden and founder of The Hague Centre for Strategic Studies. Rob is also a much sought-after expert who appears on radio and television programmes. What does the rise of AI mean geopolitically and in armed conflicts?


Bram Schot on the impact of AI on mobility
Marieke Martens, science director at TNO and professor of automated vehicles at the Eindhoven University of Technology, talks to Bram Schot. Schot was the CEO of Audi until 2020, having previously held management positions at various car makers, including Mercedes and Volkswagen. Their conversation concerns the influence of AI on mobility. How will AI impact the production process? And what does a future with autonomous vehicles look like?


Eppo Bruins on AI in different government domains
Michiel van der Meulen, chief geologist for the Geological Survey of the Netherlands (GDN), speaks with Eppo Bruins. Bruins was educated as a nuclear physicist and has spent many years working in the world of science, innovation, and technology. Between 2015 and 2021, he was a Dutch member of parliament for the Christian Union. He was recently appointed chairman of the Advisory council for science, technology and innovation (AWTI). What will AI mean for the various government domains in the coming years?

