Natural language processing versus handmatige tekstanalyse

Thema:
Artificiële intelligentie

We verzamelen steeds meer data, bijvoorbeeld uit camerabeelden en tekstdocumenten. Deze data biedt ons relevante informatie. Maar we slaan de data niet altijd op een gestructureerde manier op. Relevante informatie uit de data ophalen is daardoor lastig. Met de AI-techniek natural language processing (NLP) pakken we dit probleem aan.

Wat is natural language processing?

Natural language processing, of in het Nederlands natuurlijke taalverwerking, combineert statistische technieken met machine learning technieken. Met inzet van NLP halen we slim en automatisch informatie uit omvangrijke en ongestructureerde tekstuele data. We halen bijvoorbeeld makkelijk kernwoorden uit een tekst. Hieruit maken we belangrijke classificaties.

Automatisch taxonomieën maken met NLP

Overeenstemmend jargon in een vakgebied bepalen, kost veel tijd. Met jargon kun je processen beter stroomlijnen en standaardiseren, bijvoorbeeld in de vorm van een:

  • taxonomie (het indelen van individuen of objecten in groepen)
  • ontologie (deel van de filosofie dat alle bestaande dingen in categorieën onderbrengt)

Met inzet van NLP identificeren wij belangrijke termen uit een set documenten en bepalen we hun onderlinge relaties. We doen dit door het combineren van:

  • syntactische informatie (zinsconstructie)
  • trefwoordextractie
  • web-bronnen
  • semantische inbedmethoden

De taxonomie gebruiken we vervolgens als input voor een expertsessie.

Natural language processing en trendvoorspelling

Bij TNO extraheren we met onze tools automatisch informatie uit documenten. Daarnaast maken we voorspellingen. Met de Horizon Scanner bijvoorbeeld, verkennen en extraheren we relevante websites, blogs en documenten. Daardoor halen we relevante informatie op en laten we trends zien. Wat we zien in zo’n trendanalyse? Bijvoorbeeld dat men de term 'deep learning' (diep leren) in de computerwetenschap nu veel vaker noemt dan 10 jaar geleden.

Met behulp van NLP classificeren we documenten automatisch. Bijvoorbeeld op een bepaald onderwerp of vakgebied. Verder maken we vanuit blogs een sentimentanalyse. Daarmee bepalen we of men termen nu negatiever of positiever beschrijft. Met deze AI-techniek besparen we dus veel tijd en moeite ten opzichte van handmatige tekstanalyses én werken we nauwkeuriger.

Laat je verder inspireren

37 resultaten, getoond 1 t/m 5

De opvoeding van AI

Informatietype:
Insight
27 september 2022

TNO voorspelt dat intelligente algoritmes snel ‘volwassen’ zullen worden. Zo kunnen ze medisch of juridisch advies bieden, maar ook autonoom worden ingezet waar te weinig man-, denk- of tijdkracht beschikbaar is.

Innovatie met AI

Informatietype:
Insight
27 september 2022

AI-gedreven innovatie voor het bedrijfsleven zal leiden tot een toename van 10% van het huidige Europese BNP in 2030. Hoe ziet die wereld er concreet uit? In de bouw, in de zorg en andere sectoren.

Innovatie innoveren

Informatietype:
Insight
27 september 2022

AI verandert de rol van de onderzoeker. De door AI gegenereerde kennis zal de komende decennia nog niet ‘verklarend’ zijn. Het legt wel verbanden, maar kent geen oorzaak-gevolg. Creativiteit blijft voorlopig voorbehouden aan de mens.

Arnon Grunberg over AI, creativiteit en moreel handelen

Informatietype:
Insight
27 september 2022

Peter Werkhoven, Chief Scientific Officer bij TNO, gaat in gesprek met Arnon Grunberg vanuit zijn standplaats New York. Jaren geleden spraken de twee elkaar tijdens een etentje over AI. Vandaag krijgen ze eindelijk de kans om dat gesprek voort te zetten. Wat is Grunbergs kijk of creativiteit? Kan dit worden geleerd aan een machine? En hoe verhoudt de mens zich moreel tot de machine?

Eppo Bruins over AI in verschillende overheidsdomeinen

Informatietype:
Insight
27 september 2022

Eppo Bruins, Voorzitter Adviesraad voor wetenschap, technologie en innovatie in gesprek met Michiel van der Meulen (TNO) over de ontwikkeling van AI.