Wij richten ons op tien maatschappelijke aandachtsgebieden.
TNO werkt veel samen met bedrijven, overheden en andere organisaties. Onze kennis en expertise is gericht op toepassing met en voor anderen.
We ontwikkelen kennis niet om de kennis, maar om de praktische toepassing.
TNO biedt je de kans om grensverleggend werk te doen en klanten en samenleving te helpen met innovatieve, praktische, slimme oplossingen.
Op TNO Insights lees je verdiepende interviews en artikelen. Laat je inspireren door de innovaties van TNO!
|
Cyber-physical systems across application domains are getting increasingly complex, driven by five technological and market trends: 1) all current design parameters, e.g. number of interfaces, are increasing by an order of magnitude, 2) increased customization of systems at design time, 3) continuous evolution of systems after deployment, 4) increased system autonomy, and 5) integration into distributed systems-of-systems. The consequences of increasing complexity are visible in daily practice in which Dutch industry struggles to efficiently develop correct and well-performing cyber-physical systems.
In line with TNOs goal to increase competitiveness of Dutch industry, my research aims to address increasing complexity through new model-based design methodologies. These are methodologies in which abstraction, provided by models used for specification, communication, analysis, simulation, or synthesis, play an essential role in reducing development time and overall system cost. A key part of this research is to investigate how models can be used to automatically generate parts of complex systems that are guaranteed to provide the specified functionality at exactly the right time. For example, to ensure that an airbag immediately inflates correctly in the event of a car crash, which requires both correct and timely interactions between hardware and software.
Much of my recent research advances the state-of-the-art in design of mixed-criticality real-time systems, e.g. in the avionics domain, where applications with different safety requirements share resources, such as processors, memories, and caches.
My work contributes mapping and scheduling techniques, along with automatic resource budgeting methods that reduce development time, and schedulability analyses that allows timing requirements of tasks to be analytically verified. These techniques promote efficient resource usage by considering and managing variations in supply and demand of resources during execution, e.g. in response to a mode-switch in an executing task, or the system as a whole. This may reduce the cost of the platform required to schedule a given task set, or allow more tasks to be scheduled on a given platform. Enforcing resource budgets furthermore promotes safety by temporally isolating accesses from different applications, which may reduce the time and cost of safety certification.
blijf op de hoogte van ons laatste nieuws, vacatures en activiteiten
Op TNO.nl maken we gebruik van cookies. De daarin opgeslagen informatie kan bij een volgend bezoek weer naar onze servers teruggestuurd worden.