Predicting environmental impact with Next Generation Impact Assessment
To provide insight into the potential environmental impact of innovations in construction and infrastructure at an early stage of technology development, in particular those that contribute to the reduction of CO2 emissions. TNO is committed to this with next generation impact assessment.
Would you like to know more?
Get in touch with Mark van Ommen
The circular economy is still insufficiently anchored in existing analyses, such as the life cycle analysis (LCA), that aim to assess environmental impact. The impact assessment criteria are under development and should be made applicable to the four R's: reduce, recycle, reuse and remanufacture. By realising this, TNO makes it possible to calculate variables such as CO2 emissions and the environmental cost indicator (ECI) value and to provide insight into the consequences of choices for the future.
Knowledge of life cycle analysis
With next generation impact assessment TNO is focusing on the future. For example, how can we predict the environmental impact of technologies and innovations, which are also in a state of flux, by 2030 or 2050? If the industry is working on sustainable concrete, it is necessary to calculate the effect of recycling and the recycling methods that exist in the changing world.
TNO combines in-depth knowledge about life cycle analyses with domain-specific knowledge about, for example, construction, sustainability and the ecosystem. The analyses take into account every aspect of the circular economy.
Circular Value Creation
In the Circular Value Creation program we quantify and model the impact – environmental, economic and social - of circular and sustainable technologies, strategies & policies. We focus on impact analyses and value creation models, connecting to circular hubs and accelerating transition to a circular economy. Aiming at 3 transition agenda’s: build environment & infrastructure, manufacturing industry and consumption products. And aim at (inter)national and local governments and authorities as launching customers in initiating the transition.
Approach social impact
Through Social LCA, TNO analyzes the social and socioeconomic effects throughout the life cycle. This involves the impact and conditions experienced by employees, consumers, local communities and society during the life cycle in terms of, for example, labor law (fair pay, forced labor, child labor), data privacy, safe and healthy living conditions and corruption.
Using the Social Hotspot Database and the Social LCA methodology, TNO has developed an approach to determine the social and socio-economic effects throughout the lifecycle. TNO helps companies and governments to map out the often complex social impact of their actions. For example, the Municipality of Amsterdam, which is investigating the effects of material flows in the city on the environment and climate and social impact in the "Monitor Amsterdam Circulair".
Optimal building environmental performance
The Netherlands aims to maximise the contribution of the built environment to the environmental and climate objectives. The optimum performance of a building lies in an integrated approach to its energy, climate and environmental performance over its entire lifespan. That is why TNO is working on innovations for both new buildings and renovations that will help to optimise the energy measures.
Quantifying the impact of the circular economy
A circular economy is about stimulating reuse. For the built environment this presents a huge challenge. This means that the service life may be 80 years or even longer. Differentiation between upcycling and downcycling is also a challenge. Asphalt can be recycled in the top layer at high quality, but it can also be used as rubble in the foundation at low quality.
With solutions that quantify the environmental impact of the circular economy, TNO helps public authorities and large companies to make informed decisions.
Predicting the environmental impact of new technologies
Investments in construction are made for the long term. In a life cycle analysis it is therefore necessary to be able to calculate the environmental impact using future scenarios. This means that, for example, the energy transition in the models will result in both an increased use of renewable energy in 2030 and 2050 and an increase in sustainable transport.
Also growth in the use of secondary raw materials through recycling cannot automatically be included in the life cycle analysis. TNO researches the effects of new technologies, so that investments are based on developments that the construction industry is experiencing.
Circular economy: This is how you also determine a product’s social impact
- Artificial Intelligence
- Application areas
- Use cases
- Program line 1: Safe autonomous systems in an open world
- Program line 2: Responsible human-machine interaction
- Secure learning in money laundering detection
- Fair decision making in the job market
- Secure learning in diabetes-2 advice
- Diagnosing for printer maintenance
- Subsidence monitoring
- Fair decision making in justice
- Augmented worker for smart industry
- Energy balancing for smart homes
- Secure learning in oncology research
- Innovation monitoring in policy
- News
- Defence, Safety & Security
- Roadmaps
- Operations & Human Factors
- Climate Chambers for Research into Human Performance
- Desdemona: The ultimate motion simulator
- LT Lab: the TNO learning technology laboratory
- Performance and health monitoring
- Motion sickness and performance
- The neurobiology of Stress
- NetForce Command: an alternative to hierarchical command and control
- Operational military performance in a virtual world
- SUPRA
- Simulation Live Virtual and Constructive
- Concept Development & Experimentation
- IAMD: Integrated Air & Missile Defence
- JROADS
- FACSIM
- Helicopter studies
- Replacement of the F-16
- MARVEL / Comprehensive Approach
- TNO ACE: Advanced CD&E Environment
- Integrated approach to Dutch Royal Navy patrol ships
- Operational analysis during military operations
- SketchaWorld: from sketch to virtual world
- Camouflage
- Information & Sensor Systems
- Digital Resilience of The Netherlands
- LFAS - Low Frequency Active Sonar
- Tanker Remote Vision System
- Platform signatures
- TNO shapes the future of MMICs and RFICs
- CARPET: Computer-Aided Radar Performance Evaluation Tool
- Underwater Warfare and Security
- Wide Area Motion Imagery WAMI
- SAKAMATA: sonar and marine mammals
- PARANOID: rapid information processing
- Mine analysis and threat evaluation
- Ship acoustics and underwater acoustic signatures
- PERSEUS Wind Turbine Radar Interference Assessment tool
- Electromagnetic security
- Operating safely at sea
- Operations at sea
- Ocean Space
- National Security
- A new vision on modernizing the emergency reporting process
- Social media in the security sector
- Automatic Video Compilation and Analysis System (AVACS)
- The Dutch Cyber Cube Method: Improving Human Capital for SOCs and CSIRTs
- Concealed weapon detection
- FP7 Project IMPACT Europe
- Critical Infrastructure Protection (CIP) policies in Europe
- @MIGO: border control
- Smarter Surveillance, man, machine, synergy
- Cyber Security of Industrial Control Systems
- Privacy enhancing techniques in cyber security data sharing
- Driving Innovation in Crisis Management with DRIVER+
- Crisis management: new challenges, new opportunities
- The learning professional: resilient and deployable for the long term
- Protection, Munitions & Weapons
- Weapons systems control and analysis
- Weapon Effects & Protection Center
- Firepower
- Protection and survivability of vehicles
- Naval protection and survivability
- Infrastructure protection and survivability
- World-class ballistics research
- Countering Explosive Threats
- Materials for protection concepts
- Processing of Propellants, Explosives and Pyrotechnics
- Ammunition Safety
- Ballistic Performance and Personal Protection
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Anticipating accidents, incidents and threats
- Protecting those who protect us
- Process Safety Solutions: Expertise in Handling Hazardous Conditions Safely
- Expertise groups
- Acoustics and Sonar
- Chemical, Biological, Radiological and Nuclear (CBRN) Protection
- Electronic Defence
- Energetic Materials
- Explosions, Ballistics and Protection
- Human Behaviour and Organisational Innovation
- Human Machine Teaming
- Human Performance
- Intelligent Autonomous Systems
- Intelligent Imaging
- Military Operations
- Modelling, Simulation and Gaming
- Networked Organisations
- Radar Technology
- Weapon Systems
- Energy Transition
- Roadmaps
- Renewable electricity
- Towards large-scale generation of wind energy
- The important of support structures
- Wind turbines, fully in motion
- Innovation towards 10-20 MW offshore wind turbines
- Modeling 10MW+ turbines aerodynamically
- Design for Reliable Power Performance (D4REL)
- Optimised wind blade tip design
- Vortex-wake models in wind turbine design
- Modelling improvement wind turbine blades
- Converters for Clean, Low Cost Electricity
- Haliade X: largest wind turbine ever
- New research on blade tip improvements
- Less production per wind turbine, still higher yield
- Logistics innovative strength at home and abroad
- Wind turbine management and maintenance
- Wind farms in synergy with the environment
- Innovative methods for wind measurements
- Keeping the electricity grid stable when there’s a surplus of wind and solar
- Innovation and the rise of solar energy
- Solar farms respecting landscape and nature
- Solar panels on farmland
- Research innovative solar parks
- Better design of solar parks
- Savings on solar farm operations and maintenance
- Floating solar panels on inland waterbodies
- Offshore solar energy
- National Consortium Solar in Landscape
- National Consortium Solar on Water
- Field lab floating solar
- Research into environmental effects of solar, wind energy
- Solar energy on buildings and infrastructure
- Solar panels in façades
- Solar windows
- More focus on safety of solar systems
- Solar heat and PV-T
- Roofs for solar energy
- Noise barriers producing solar energy
- Solar energy in road surfaces and crash barriers
- Solar panel energy generated on dikes
- Solar and infrastructure
- Outdoor test facility for BIPV(T)
- Solar Highways
- Solar-powered cars
- Mass customization
- Solar panel efficiency
- New technologies make PV more versatile
- Webinar: Innovations in solar energy technologies
- Putting Europe back in the lead in solar panel production
- System transition
- The social aspects of the energy transition
- TNO facilities for research into environmental effects of solar and wind energy
- Effective interventions to increase energy efficiency and reduce energy poverty
- Green and Ease under one roof
- Capacity building programme for energy efficiency in industry
- Zooming in on the future to make the right choices
- Scenarios for a climate-neutral energy system
- A fair system without energy poverty
- Financing the energy transition
- LAUNCH
- Successful neighbourhood approach: motivate residents
- Towards a reliable, affordable and fair energy system
- Towards CO2 neutral industry
- Reducing CO2 emissions through capture, use and storage
- SEWGS: revolutionary CO2-reduction technology and blue hydrogen production
- STEPWISE and FReSMe: CO2 reduction solutions for the steel industry
- 3D-printing for CO2 capture productivity increase
- Multi-partner ALIGN-CCUS project
- CEMCAP
- Reduce emissions steel industry
- CO₂ capture with AVR
- On-site CO₂ Capture Services: reducing emissions cost effectively
- SEDMES: Efficient technology to convert CO2 to useful product
- Hydrogen for a sustainable energy supply
- Optimising production hydrogen
- Hydrogen storage and transport
- Hydrogen, fuel and feedstock
- H-vision: blue hydrogen to accelerate carbon-low industry
- 15 things you need to know about hydrogen
- World first: Green hydrogen production in the North Sea
- New research centre for hydrogen production
- Identifying the future international chain of green hydrogen
- Opportunities for green hydrogen for the manufacturing industry investigated
- Hydrogen from offshore wind: optimising the electricity grid
- Faraday lab: optimising and scaling up electrolysis
- Blue hydrogen paves the way for green hydrogen
- Biomass to fuels and feedstock
- ARBAHEAT - Sustainable future for coal-fired power stations possible through conversion to biomass
- AMBITION Advanced biofuel production from lignin rich residues
- BECOOL EU Brazilian cooperation on advanced biofuels
- Horti-BlueC - a new EU cooperation on reducing Bio-waste and CO2-footprint in horticulture
- UNRAVEL - valorization of lignocellulosic biomass
- MacroFuels advanced biofuels from seaweed
- BRISK2 Biofuel Research Infrastructure for Sharing Knowledge
- New facility for seaweed processing
- TORWASH technology successful for waste water treatment and recycling plastics
- Biofuels lab: Making transport more sustainable with biofuels
- Take-Off: Sustainable aviation fuels from CO2, water and green energy
- HEREWEAR: Circular textiles from locally-sourced bio-based materials
- Transition to e-fuels: a strategy for HIC Rotterdam
- Re-use of existing infrastructure to accelerate the energy transition
- Sustainable Industrial Heat System
- 4 pioneering routes to a CO2 neutral industry
- Research facility Industrial Electrification accelerates greening of Rotterdam port
- Mollier facility: innovating in industrial drying technology
- Research facility for negative CO2 emissions
- Carnot lab accelerates sustainable industrial heat management
- Using energy and raw materials efficiently in industry
- e-Missi0n MOOI: TNO supports Dow and Shell in electric cracking
- CO2 reduction requires improvement of industrial processes
- Making the industrial energy transition feasible and affordable
- Sustainable subsurface
- Geological Survey of the Netherlands
- Geological Survey of the Netherlands
- 100 years of geological mapping
- GeoTOP
- Sand, gravel and clay extraction
- GIS and other tools for interactive planning
- DINO, Data and Information of the Dutch Subsurface
- BRO: the Dutch Key Register of the Subsurface
- Sustainable use and management Flemish-Dutch subsurface
- Petroleum Geological Atlas of the Southern Permian Basin
- 3D Subsurface mapping of the Dutch offshore
- Geological Survey of the Netherlands across borders
- Towards an energy-producing environment
- Expertise
- Industry
- Roadmaps
- Flexible & Free-form Products
- Space & Scientific Instrumentation
- Semiconductor Equipment
- Smart Industry
- Expertise groups
- Buildings, Infrastructure & Maritime
- Roadmaps
- Safe and Sustainable Living Environment
- Infrastructure
- Sustainable buildings: towards an energy-producing built environment
- Building innovation
- Greenhouse design
- Digitisation in construction
- Smart megastructures
- Expertise groups
- Circular Economy & Environment
- Roadmaps
- Circular economy
- Environment & Climate
- Sustainable Chemical Industry
- Expertise groups
- Healthy Living
- Roadmaps
- Health Technology & Digital Health
- Biomedical Health
- Work
- Youth
- Expertise groups
- Traffic & Transport
- Roadmaps
- SMART and Safe Traffic and Transport
- Societal impact for accessibility and liveability
- Decision-making information based on facts for municipalities
- Making disruptive technologies practicable
- Accessible, healthy and vibrant cities
- CITYkeys – Performance evaluation framework for smart cities and projects
- Big data ecosystems: collaborating on data-controlled cities
- Knowledge mediator puts an end to bickering
- Intact – Climate resilient critical infrastructure
- Organising mobility
- Smart mobility and logistics
- Smart vehicles
- Smart Mobility Research Centre SMRC
- Sustainable Traffic and Transport
- Sustainable Mobility and Logistics
- Improving air quality by monitoring real-world emissions
- Emission factors for road traffic
- Measuring the emissions of powered two wheelers
- Emissions of particulate matter from diesel cars
- Random Cycle Generator
- EnViVer: model traffic flow and emissions
- Measuring real-world emissions with TNO’s Smart Emissions Measurement System (SEMS)
- Measuring the emissions of trucks and buses
- Reducing Greenhouse Gas Emissions in Commercial Road Transport
- Measuring the emissions of non-road mobile machinery
- Emission measures in practice
- The transition to CO2-neutral mobility in 2050
- Sustainable Vehicles
- Innovative technologies for zero-emission vehicles
- CO2 reduction by high-efficiency Flex Fuel technology with extremely low emissions
- Actual energy consumption and emissions
- Automotive Battery Research
- Making transport more sustainable by means of electric vehicles
- Energy Efficient Electric Bus E3Bus
- eCoMove
- How hydrogen can accelerate energy transition in the transport sector
- Green performance of ships
- Expertise groups
- Information & Communication Technology
- Roadmaps
- Fast open infrastructures
- Data sharing
- Trusted ICT
- Efficiency, effectiveness, quality and the costs of systems
- Expertise groups
- Strategic Analysis & Policy
- Expertise groups
- Strategic Business Analysis
- Strategy & Policy
- Orchestrating Innovation
- Tech Transfer
Ing. Mark van Ommen MBA
Send a question to Ing. Mark van Ommen MBA
Your question has been sent.
Sorry! Something unexpected happened. Please try again later.